

Homework 2

MA 564

Due February 17, 2026

1. Let $\Gamma = \{(x, y) \in \mathbb{R}^2 : y \geq 0\}$, and let d be the usual Euclidean metric on \mathbb{R}^2 .
 - For a point $p = (x, y) \in \Gamma$ with $y > 0$, let $\mathcal{B}_p = \{B_d(p, \epsilon) : 0 < \epsilon < y\}$.
 - For a point $p = (x, 0) \in \Gamma$, let $\mathcal{B}_p = \{\{p\} \cup A : A \text{ is a usual open disc in the upper half-plane tangent to the } x\text{-axis at } p\}$.
 - (a) Let $\mathcal{B} = \bigcup_{p \in \Gamma} \mathcal{B}_p$. Show that \mathcal{B} is a basis for a topology \mathcal{T} on Γ . The topological space (Γ, \mathcal{T}) is called the “Moore Plane”.
 - (b) Show that (Γ, \mathcal{T}) is first countable and separable.
 - (c) Is (Γ, \mathcal{T}) second countable?
 - (d) Show that the subspace topology on the x -axis is the discrete topology (i.e., every subset of the x -axis is open in the subspace topology).
2. Prove the following identities for any subsets A and B of a topological space (X, \mathcal{T}) .
 - (a) $\text{Cl}(A \cup B) = \text{Cl}(A) \cup \text{Cl}(B)$
 - (b) $\text{Cl } A = A \cup \partial A$
 - (c) $\text{Int } A = A \setminus \partial A = X \setminus \text{Cl}(X \setminus A)$
 - (d) $\partial A = \text{Cl}(A) \setminus \text{Int } A$
 - (e) The sets $\text{Int } A$, ∂A and $\text{Int}(X \setminus A)$ are disjoint and their union is X .
3. A *pre-order* on a set X is a relation that is reflexive and transitive. A set $A \subseteq X$ is called an *upper set* if for every $a \in A$, if $b \in X$ satisfies $a \leq b$ then $b \in A$. A is called a *lower set* if for every $a \in A$, if $b \in X$ satisfies $b \leq a$ then $b \in A$. Assume that X is endowed with a topology \mathcal{T} .
 - (a) Show that the relation $\leq_{\mathcal{T}}$ given by $x \leq_{\mathcal{T}} y$ if $x \in \text{Cl}(\{y\})$ is a pre-order on X . This is called the *specialization pre-order* of \mathcal{T} .
 - (b) Show that all open sets in (X, \mathcal{T}) are upper sets with respect to $\leq_{\mathcal{T}}$ and all closed sets are lower sets.
 - (c) Given $x \in X$, let $\uparrow x = \{y \in X : x \leq_{\mathcal{T}} y\}$ and $\downarrow x = \{y \in X : y \leq_{\mathcal{T}} x\}$. Show that $\uparrow x$ is the intersection of all neighborhoods of x and that $\downarrow x = \text{Cl}(\{x\})$.

(d) Is $\uparrow x$ always open? Is $\downarrow x$ always closed?

(e) If $X = \{0, 1\}$ and $\mathcal{T} = \{\emptyset, \{1\}, \{0, 1\}\}$, the pair (X, \mathcal{T}) is a topological space called *Sierpinski space*. Compute $L(\{0\})$ and $L(\{1\})$, and find the specialization pre-order $\leq_{\mathcal{T}}$.

4. Consider the set $Y = [-1, 1]$ in \mathbb{R} equipped with the standard topology. Which of the following sets are open in Y , and which are open in \mathbb{R} ? No justification needed.

$$A = \{x : \frac{1}{2} < |x| < 1\} \quad B = \{x : \frac{1}{2} < |x| \leq 1\}$$

$$C = \{x : \frac{1}{2} \leq |x| < 1\} \quad D = \{x : \frac{1}{2} \leq |x| \leq 1\}$$

$$E = \{0 < |x| < 1 \text{ and } \frac{1}{x} \notin \mathbb{N}\}$$

5. Let \mathbb{R}_0 denote \mathbb{R} with the discrete topology and \mathbb{R}_1 denote \mathbb{R} with the standard topology. Show that the dictionary order topology on $\mathbb{R} \times \mathbb{R}$ is the same as the product topology $\mathbb{R}_0 \times \mathbb{R}_1$. Compare this topology with the standard topology on \mathbb{R}^2 .

6. Let (X, \mathcal{T}) be a topological space. An *open cover* of X is a collection \mathcal{U} of open sets such that $\bigcup_{E \in \mathcal{U}} E = X$. Any collection $\mathcal{U}' \subseteq \mathcal{U}$ with $\bigcup_{E \in \mathcal{U}'} E = X$ is called a sub-cover of \mathcal{U} . The space (X, \mathcal{T}) is said to be *Lindelöf* if every open cover has a countable sub-cover.

- Show that every second countable space is Lindelöf.
- Show that a metric space is Lindelöf if and only if it is second countable.
- Prove that the product topology $\mathbb{R}_\ell \times \mathbb{R}_\ell$ is not Lindelöf.

7. Let \mathcal{T} be the cofinite topology on \mathbb{R} and let $E = \{2, 4, 6, \dots\}$ be the set of even natural numbers.

- Find $\text{Cl } E$, $L(E)$ and ∂E in the topological space $(\mathbb{R}, \mathcal{T})$.
- Is $(\mathbb{R}, \mathcal{T})$ separable?
- Show that $(\mathbb{R}, \mathcal{T})$ is not pseudometrizable.

8. Let (X, \mathcal{T}) and (Y, \mathcal{T}') be topological spaces. Let $\mathcal{B} \subseteq 2^Y$ be a basis for \mathcal{T}' and $\mathcal{S} \subseteq 2^Y$ be a sub-basis for \mathcal{T}_Y . Prove or disprove:

- $f : (X, \mathcal{T}) \rightarrow (Y, \mathcal{T}')$ is continuous if and only if $f^{-1}(B)$ is open for every $B \in \mathcal{B}$.
- f as above is continuous if and only if $f^{-1}(B)$ is open for every $B \in \mathcal{S}$.

9. Prove that every infinite T_2 (Hausdorff) space X contains an infinite discrete subspace (i.e, an infinite subset Y for which the subspace topology is the discrete topology on Y).

10. Let X and Y be topological spaces and $f : X \rightarrow Y$ be a function. f is said to be open if $f(U)$ is open for every open set U . Consider the map $f : [0, 2\pi) \rightarrow \mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ given by $f(\theta) = (\cos \theta, \sin \theta)$. Equip $[0, 2\pi)$ with the subspace topology of the standard topology on \mathbb{R} , and \mathbb{S}^1 with the subspace topology of the standard topology on \mathbb{R}^2 . Is the map f continuous? Is it open?