Homework 1

MA 771

Due February 6 2025

Please scan or type your homework and hand/email it to me by 5pm on the due date.

- 1. Given a real number $\lambda > 0$, find the largest closed interval I = [a, b] centered at a given point x_0 on the real line such that $f: I \longrightarrow \mathbb{R}$ given by $f(x) = x^2$ is a λ -contraction.
- 2. Show that the following statements are equivalent:
 - the endomorphism of the torus $T_A : \mathbb{T}^n \longrightarrow \mathbb{T}^n$ is invertible
 - $x \in \mathbb{Z}^n$ if and only if $Ax \in \mathbb{Z}^n$, for every $x \in \mathbb{Z}^n$
 - $|\det A| = 1.$
- 3. Let m > 1 be an integer and let $E_m : \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ be the expanding map $x \mapsto mx \pmod{1}$.
 - Prove that the set of all periodic points of E_m is dense in \mathbb{S}^1 .
 - A point $x \in \mathbb{S}^1$ is pre-periodic under E_m if $y = E_m^{\circ k}(x)$ is a periodic point for some $k \ge 0$. Show that the set of pre-periodic points under E_m is \mathbb{Q}/\mathbb{Z} .
- 4. Suppose that (X, d) is a compact metric space and $f: X \longrightarrow X$ is such that

$$d(f(x), f(y)) < d(x, y)$$

for any $x \neq y$. Prove that f has a unique fixed point $x_0 \in I$ and $\lim_{n\to\infty} f^{\circ n}(x) = x_0$ for any $x \in X$.

5. Prove that the square Sierpinski carpet \mathcal{J} is the set of points $(x, y) \in [0, 1] \times [0, 1]$ for which there exist ternary expansions $.x_1x_2x_3...$ for x and $.y_1y_2y_3...$ for y such that for every $n \in \mathbb{N}$, either $x_n \neq 1$ or $y_n \neq 1$.