Homework 2

MA 771

Due February 20 2025

Please scan or type your homework and hand/email it to me by 5pm on the due date.

1. Let Σ_A be the space of sequences over a finite alphabet $A \subset X$, and let

$$d(s,t) = \sum_{j=1}^{\infty} \frac{d_X(s_j, t_j)}{|A|^{j-1}}$$

be the usual metric on A. The topology on Σ_A induced by d is called the *standard* cylinder topology.

- For $s \in \Sigma_A$ and $N \in \mathbb{N}$, define the cylinder set $U(s, N) = \{t \in \Sigma_A : s_j = t_j \text{ for } j = 1, 2, \dots, N\}$. Prove that the collection of cylinder sets $\{U(s, N) : s \in \Sigma_A, N \in \mathbb{N}\}$ forms a basis for the above topology on Σ_A .
- Prove that the left shift operator $\sigma: \Sigma_A \longrightarrow \Sigma_A$ is topologically mixing.
- 2. Let f(x) = 2x(1-x) and g(x) = 5x(1-x). Show that the dynamical systems (\mathbb{R}, f) and (\mathbb{R}, g) are not topologically conjugate.
- 3. Prove that if $f, g : \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ are expanding maps of degree 2, then the dynamical systems (\mathbb{S}^1, f) and (\mathbb{S}^1, g) are topologically conjugate.
- 4. Let $A = (a_{ij})_{i,j=1}^n$ be an $n \times n$ matrix with real entries. Suppose the linear map $x \mapsto Ax$ is a contraction on \mathbb{R}^n (i.e., ||A|| < 1), prove that

$$\mathbf{tr} \ A = \sum_{j=1}^{n} a_{jj} < n.$$

- 5. Let (X, d) be a metric space and suppose $f : X \longrightarrow X$ is an isometry (i.e., d(f(x), f(y)) = d(x, y) for all $x, y \in X$). Show that f is not topologically mixing.
- 6. Let (G, \cdot) be a metrizable compact topological group. Let $g_0 \in G$ be an element for which the translation $L_{g_0} : h \mapsto g_0 \cdot h$ is topologically transitive.
 - Prove that the grand orbit $(L_{g_0}^{\circ n}(h))_{n\in\mathbb{Z}}$ is dense in G for every $h\in G$.
 - Use the above to show that the cyclic subgroup of G generated by g_0 is dense in G.

- Prove that G is Abelian.
 - Hint: The multiplication map on G is continuous. Using everything you did above, prove that for any $g, h \in G$, the elements $g \cdot h$ and $h \cdot g$ are arbitrarily close to each other in the metric of G.