Homework 3

MA 771

Due March 13 2025

Please scan or type your homework and hand/email it to me by 5pm on the due date.

- 1. Consider $F(x) := x + \frac{1}{4\pi} \sin(2\pi x)$ on the real line. Decide whether F is the lift of a circle homeomorphism, and, if so, decide whether that homeomorphism is orientation-preserving. If it is, determine the rotation number.
 - Show that there exists a point $x_0 \in \mathbb{S}^1$ such that the closure of its orbit under the expanding map E_3 is the set $\{[x] \in \mathbb{S}^1 : x \in \mathcal{C}\}$ where $\mathcal{C} \subset [0, 1]$ is the ternary Cantor set.
- 2. Let A be the annulus $\mathbb{R}/\mathbb{Z} \times [0,1]$. Consider the linear twist $T: A \to A$ given by

T([x], t) = ([x+t], t) for all $([x], t) \in A$

Prove that T has the following property of partial topological mixing: Let $U, V \subseteq \mathbb{R}/\mathbb{Z}$ be non-empty open sets. Then there exists $N \in N$ such that

$$T^{\circ n}(U \times [0,1]) \cap (V \times [0,1]) \neq \emptyset$$
 for any $n \ge N$.

- 3. Let f be a topologically mixing map on a metric space (X, d). Recall that the diameter of X is defined as $\sup\{d(x, y) : x, y \in X\} \in [0, \infty]$. Prove that any real number $\Delta \ge 0$ strictly less than the diameter of X is a sensitivity constant for f.
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Prove the following.
 - Suppose I and J are closed intervals such that $I \subset J$ and $J \subset f(I)$. Then show that f has a fixed point in I.
 - Suppose $A_0, A_1, ..., A_N$ are closed intervals and $A_{n+1} \subset f(A_n)$ for $n \in \{0, 1, \cdots, N-1\}$. 1}. Then for each $i \in \{0, 1, \cdots, N-1\}$, there exists $J_i \subset A_0$ such that $f^{\circ n}(J_i) \subset A_n$ for $n \in \{0, 1, \cdots, i\}$ and $f^{\circ (i+1)}(J_i) = A_{i+1}$.
- 5. Consider a 2 × 2 integer matrix A with $|\det A| > 1$. Assuming that A is hyperbolic, prove that the non-invertible torus endomorphism $T_A : \mathbb{T}^2 \to \mathbb{T}^2$ is topologically mixing. Optional Hint: Say v_1 and v_2 are linearly independent eigenvectors. For a fixed $x \in \mathbb{R}^2$ and $i \in \{1, 2\}$, what do lines of the form $\{x + tv_i : t \in \mathbb{R}\}$ look like on the torus?