Homework 5

MA 771

Due April 28 2025

Please scan or type your homework and hand/email it to me by 5pm on the due date.

- 1. Let m, n be natural numbers such that $2 \le m < n$. Let $A = \{0, 1, \dots, m-1\}$ and $B = \{0, 1, \dots, n-1\}$. Show that there exists a surjective continuous map $h : \Sigma_B \to \Sigma_A$ such that $h \circ \sigma = \sigma \circ h$. Is h invertible?
- 2. Suppose $X = \bigcup_i X_i$ is compact, $f : X \to X$ such that each X_i is closed in X and satisfies $f(X_i) = X_i$. Show that $h_{top}(f) = \sup_i h_{top}(f|_{X_i})$.
- 3. (a) Suppose $T: X \to X$ is a continuous transformation of a topological space X, and μ is a finite T-invariant Borel measure on X with $\operatorname{supp} \mu = X$. Show that every point is non-wandering.
 - (b) Show that an isometry of a compact metric space is not mixing for any invariant Borel measure whose support is not a single point. In particular, circle rotations are not mixing.
- 4. Let A be an $n \times n$ matrix over \mathbb{R} and assume that A has only real eigenvalues. In this exercise we will prove that for every $\delta > 0$ there is a norm $|| \cdot ||$ on \mathbb{R}^n such that $||A|| < r(A) + \delta$ by the following sequence of steps.
 - Let λ be an eigenvalue of A with multiplicity k. Let $\Delta = A \lambda \operatorname{Id}$. Define the generalized eigenspace

$$E_{\lambda} = \{ v \in \mathbb{R}^n : \Delta^k v = 0 \}$$

Prove that on E_{λ} , we have

$$A^{n} = \lambda^{n} \sum_{\ell=0}^{k-1} \binom{n}{\ell} \lambda^{-\ell} \Delta^{\ell}$$

• Show that there exists a polynomial p such that

$$\frac{||A^n||}{\lambda^n} \le p(n) \quad \forall n \in \mathbb{N}$$

• Show that *p* above can be chosen so that

$$p(n) \le C \frac{(|\lambda| + \frac{\delta}{2})^n}{|\lambda|^n} \quad \forall n \in \mathbb{N}$$

for some constant C > 0.

• Use the previous point to prove the statement of the proposition. Hint: see lecture notes.