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Chapter 1

Basic Concepts

Dynamical systems refer to systems that evolve over time. A simple example is an ordinary
differential equation (ODE), such as

dx

dt
= g(x)

where g : Rn −→ R. Some of the questions we can ask about ODE’s include:

• Which points are stable/fixed?

• When do orbits tend to an attracting periodic cycle?

• When are orbits chaotic?

However, the class of dynamical systems is much bigger than ODE’s. In particular, in the
above example, the variable t, representing time, changes continuously. In this course we
will focus mainly on discrete dynamical systems.

Definition 1.0.1. Let X be a topological space. A discrete dynamical system is a pair
(X, f) where f : X −→ X is a self-map.

We are interested in the function f and its iterates f ◦n = f ◦ f ◦(n−1) for n ∈ N. In other
words, the quantity that is varying in a discrete fashion is the number of iterations of f .

Example 1.0.2. Linear maps Let X = Rn and f : x 7→ Ax be a linear map.

Example 1.0.3. Rotations of the Circle X = S1 and f(x) = e2πiθx for some θ ∈ R.
Example 1.0.4. Logistic Family Let X = R and fix k ∈ R>0. Then the family of maps
fk : X → X given by x 7→ kx(1− x) is called the logististic family.

Notice that we are not assuming any conditions on f such as continuity.

1.1 Orbits and Periodic Points

Definition 1.1.1. Given a dynamical system (X, f), x0 ∈ X, the sequence

x0, f(x0), f
◦2(x0), · · · , f ◦n(x0), · · ·
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is called the forward orbit of x0.
The reverse orbit of x0 is the set {x ∈ X : f ◦n(x) = x0 for some n ∈ N}.

A fixed point x ∈ X is a point such that f(x) = x. The set of fixed points of f is de-
noted Fix(f). A periodic point is a point x such that f ◦n(x) = x for some n ∈ N, in other
words, a point in Fix(f ◦n) for some n.

Any n ∈ N such that f ◦n(x) = x is said to be a period of x. The smallest period n is
called the exact period of x.

1.2 Examples

Linear Maps of R
Let f : R −→ R be linear. We know that f is of the form f(x) = mx + b where m ∈ R̸=0

and b ∈ R. Note that

f ◦n(x) = mnx+ b
(
mn−1 +mn−2 + · · ·+m+ 1

)
= mnx+ b

mn − 1

m− 1

• If m ̸= ±1, then

|m| < 1 =⇒ ∀x ∈ R, f ◦n(x) → b

1−m
as n → ∞

|m| > 1 =⇒ ∀x ∈ R, f ◦n(x) → ∞ as n → ∞

• If m = 1, then f(x) = x+ b is a translation and all orbits tend to ∞

• If m = −1, then note that f ◦2(x) = −(−x + b) + b = x, and thus all the odd iterates
are equal to f , and all the even iterates are equal to the identity.

Circle Maps

Example 1.2.1. For any rotation f(x) = e2πiθx of the circle S1, we have Fix(f) = ∅ if θ ̸∈ N,
and Fix(f) = S1 otherwise.

Definition 1.2.2. Fix an integer m > 1, and identify S1 with R/Z. The expanding map
Em : S1 −→ S1 is defined as

Em(x) = mx (mod) 1

Remark 1.2.3. Em is expanding in the following sense: if α, β ∈ S1 and dS1(α, β) <
1
m
, then

dS1(α, β) = m · dS1
(
Em(α), Em(β)

)
.

See Figure 1.1 for the graphs of Em for m = 2, 3.

4



Figure 1.1: The graphs of the expanding maps E2 (left) and E3 (right) on the interior of S1,
represented by the interval (0, 1).

Note that ϕ is a fixed point of Em if and only if mϕ − ϕ ∈ Z. In other words, there
exists n ∈ Z such that

mϕ− ϕ = n

⇐⇒ ϕ =
n

m− 1

Similarly, ϕ is a periodic point of Em of period dividing k if and only if there exists n ∈ Z
such that

mkϕ− ϕ = n

⇐⇒ ϕ =
n

mk − 1

In other words,

Fix(Em) =
{
0,

1

m− 1
,

2

m− 1
· · · , m− 2

m− 1

}
Fix

(
E◦k

m

)
=

{
0,

1

mk − 1
,

2

mk − 1
· · · , m

k − 2

mk − 1

}
Torus Endomorphisms

Given n ∈ N, the n−torus is the space Tn = Rn/Zn = Rn/ ∼ where x ∼ y if x − y ∈ Zn.
For x ∈ Rn, we let [x] denote the equivalence class of x in Tn.

Definition 1.2.4. Let A be an n × n matrix whose entries are in Z. Then A induces the
torus endomorphism TA : Tn −→ Tn given by

TA([x]) = [Ax] for [x] ∈ Tn

5



Exercise 1.2.5. Show that TA as given above is well-defined: that is, for any two vectors
v, w ∈ Rn, if v − w ∈ Zn, then Av − Aw ∈ Zn

Figure 1.2: An illustration of the torus endomorphism TA : T2 −→ T2 for A =

[
2 0
0 2

]

Example 1.2.6. Let m, k ∈ Z and consider the matrix A =

[
m 0
0 k

]
. Consider the map

TA on T2: this acts as two independent expanding maps: expansion by a factor of m in
the x−direction, and expansion by a factor of k in the y−direction (see Figure 1.2 which
illustrates the case m = k = 2). Can you show in general that the degree of such a map is
d = mk? In other words, TA is a d : 1 map of T2.

Definition 1.2.7. A torus endomorphism TA is said to be an automorphism if it is invertible.

Exercise 1.2.8. (This is also on HW 1) Show that TA is invertible if and only if A−1 has
integer entries, which in turn is equivalent to det A = ±1.

Proposition 1.2.9. Let TA : Tn −→ Tn be a torus automorphism with no eigenvalues of
modulus 1. Then the periodic points of TA are all the points with rational coordinates.

Proof. (periodic =⇒ rational):
Let [x] = [(x1, x2, · · · , xn)] ∈ Tn be a periodic point of period q for some q ∈ N. Then
T ◦q
A ([x]) = [Aqx] = [x]. That is, there exists a vector y ∈ Zn such that

Aqx = x+ y

=⇒ Aqx− x = y

=⇒ (Aq − Id)x = y

Since A has no eigenvalues of modulus 1, the matrix Aq has no eigenvalues of modulus 1.
This means that the matrix Aq − Id is invertible. So

x = (Aq − Id)−1y

Since y has integer coordinates and the matrix (Aq−Id)−1 has rational entries, x has rational
coordinates.
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(rational =⇒ periodic):
Suppose x has rational coordinates, we can assume that all the coordinates have a common
denominator. In other words, x =

(
p1
r
, p2

r
, · · · , pn

r

)
for some integers pi, r with r ̸= 0. Given

a q ∈ N, since A has integer entries, Aqx =
(p′1

r
,
p′2
r
, · · · , p

′
n

r

)
for some integers p′1, · · · , p′n.

Note that there are only finitely many points in Tn with rational coordinates with a common
denominator r. In other words, the set {T ◦q

A ([x]) : q ∈ N} is finite.

Thus, there exist q1 < q2 ∈ N such that T ◦q1
A ([x]) = T ◦q2

A ([x]). Since TA is an automor-

phism, this means that T
◦(q2−q1)
A ([x]) = [x].

1.3 Stable Behavior: The Contraction Principle

In this section we will look at maps on subsets of Rn which satisfy a criterion for all orbits
converging to a fixed point.

Global Contractions

Definition 1.3.1. A map f of a subset X of Rn is said to be Lipschitz-continuous with
Lipschitz constant λ, or λ-Lipschitz if

d(f(x), f(y)) ≤ λd(x, y)

for any x, y ∈ X.
The map f is said to be a contraction if

d(f(x), f(y)) < d(x, y) ∀x, y ∈ X.

It is said to be a λ−contraction for λ < 1 if

d(f(x), f(y)) ≤ λd(x, y) ∀x, y ∈ X.

Remark 1.3.2. If a map f is Lipschitz-continuous, then we define

Lip(f) := sup
x ̸=y

d(f(x), f(y))

d(x, y)

Example 1.3.3. f(x) =
√
x defines a contraction on I = [1,∞). What is Lip(f)?

Theorem 1.3.4 (Contraction Principle in Rn). Let X ⊂ Rn be closed and f : X −→ X be a
λ−contraction. Then f has a unique fixed point x0 and d(f ◦n(x), x0) = λnd(x, x0) for every
x ∈ X.

Proof. We have
d(f ◦n(x), f ◦n(y)) ≤ λnd(x, y)
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for all x, y ∈ X. But this also means that for any x ∈ X, we have

d(f ◦(n+1)(x), f ◦n(x)) ≤ λnd(f(x), x)

d(f ◦m(x), f ◦n(x)) ≤ d(f ◦m(x), f ◦(m−1)(x)) + d(f ◦(m−1)(x), f ◦(m−2)(x)) + · · · d(f ◦(n+1)(x), f ◦n(x))

≤
(
λm−1 + λm−2 + · · ·λn

)
d(f(x), x)

≤ λn(1− λm−n)

1− λ
d(f(x), x)

≤ λn

1− λ
d(f(x), x)

In other words, the orbit of x is a Cauchy sequence. Since X is closed, limn→∞ f ◦n(x) = x0

is a point of X, and

f(x0) = f( lim
n→∞

f ◦n(x)) = lim
n→∞

f ◦(n+1)(x0) = x0

Remark 1.3.5. Given a sequence (yn)n≥0 in a metric space (Y, d), we say that yn → y ∈ Y
exponentially if there exist constants A > 0 and 0 < λ < 1 such that

d(yn, y) ≤ Aλnd(y0, y)

Note that in the above situation, the orbit under f of x converges exponentially to x0 (here
A = 1).

The contraction principle applies to λ−contractions defined on complete metric spaces.

Theorem 1.3.6 (Contraction Principle for complete metric spaces). Let (X, d) be a complete
metric space and f : X −→ X be a λ−contraction. Then there exists a unique fixed point
x0 ∈ X such that the orbits under f of all points x ∈ X converge exponentially to x0.

Example 1.3.7 (Rabbits; due to Fibonacci). Say we record the number of rabbits in a forest
starting January (month 0) of a given year. The Fibonacci model for rabbit population
growth is as follows:
Letting bn denote the number (in hundreds) of rabbits at the beginning of month n, we
assume

b0 = 1

b1 = 2

bn = bn−1 + bn−2 for n ≥ 2.

Then it is expected that the rabbit population growth rate stabilises as n → ∞. That is,
there exists a ∈ (0,∞) such that limn→∞

bn+1

bn
= b. This means that in the long term, the

rabbit population grows approximately exponentially, by a rough factor of b each month.
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To prove the existence of a value a as required, we let an = bn+1

bn
. Note that

an+1 =
bn+2

bn+1

=
bn+1 + bn

bn+1

= 1 +
bn
bn+1

= 1 +
1

an

Letting g(x) = 1 + 1
x
, we see that

an+1 = g◦n(a0) = g◦n(2) for all n ≥ 0

Claim: There exists a closed interval I ⊂ R such that a0 = 2 such that

• g(I) ⊂ I

• g is a λ-contraction on I for some λ ∈ (0, 1), and

• a0 = 2 ∈ I

If we can prove this claim, then by the contraction principle, a can be recovered as the unique
fixed point of g in I.

Proof of claim: The function g is decreasing on (0,∞), and has the horizontal asymptote
y = 1. Note that g′(x) = −1

x2 .

This means ∀x ∈ [c,∞) where c > 1,

|g′(x)| = 1

x2
≤ 1

c2
< 1

=⇒ |g(x)− g(y)| ≤ 1

c2
|x− y| for all x, y ∈ [c,∞)

In other words, for all c > 1, g : [c,∞) −→ R is a λ−contraction with λ = 1
c2
. Also note g

has a unique positive fixed point x0: we can find it by solving the equation g(x) = x.

g(x) = x

=⇒ 1 +
1

x
= x

=⇒ x2 − x+ 1 = 0

=⇒ x =
1±

√
5

2

So x0 =
1+

√
5

2
. Note that 3

2
< x0 < 2.

Let I = [3
2
, 2], Then we have

g(2) =
3

2
and g(3/2) =

5

3
< 2.

we see that g(I) ⊂ I. By the above discussion, g is a λ−contraction on I (with λ = (2/3)2),

and thus the orbit under g of a0 = 2 converges to a = x0 =
1+

√
5

2
.

Remark 1.3.8. The choice of I is not unique: for any c ∈ (1, 3/2], we have g[c, 2] =
[3/2, g(c)] ⊂ [c, 2], and g is a λ contraction on [c, 2] with λ = 1

c2
. I made a small mis-

take in class by saying c can be in [1, x0]: can you see why c ∈ (3/2, x0] won’t work?
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Local Contractions

Proposition 1.3.9. Let f be a continuously differentiable map of Rn with a fixed point x0

where ||Dfx0|| < 1. Then there is a closed neighborhood U of x0 such that f(U) ⊂ U and f
is a contraction on U .

To do this we will need the following exercise and proposition:

Exercise 1.3.10. Given a linear map A : Rn −→ Rm, recall that

||A|| = sup
||x||̸=0

||Ax||
||x||

Prove that A 7→ ||A|| is a continuous function from Rm×n to R .

Proposition 1.3.11. Let V ⊂ Rn be a closed disk and let f : V −→ Rm be continuous,
with continuous derivative on the interior of V . Suppose there exists M > 0 such that
||Dfx|| ≤ M for all x in the interior of V . Then

d(f(x), f(y)) ≤ Md(x, y) ∀x, y ∈ V

Proof. Given x, y ∈ Rn, let g : [0, 1] −→ Rm be the function

g(t) = f((1− t)x+ ty)

Then the mean value theorem states that for some c ∈ (0, 1),

d(g(0), g(1)) ≤ ||g′(c)||

From this we get

d(f(x), f(y)) = d(g(0), g(1)) ≤ ||g′(c)||
= ||Df(1−c)x+cy(y − x)|| ≤ ||Df(1−c)x+cy|| · d(x, y)
≤ Md(x, y)

Proof of Proposition 1.3.9. The function f is C1 implies that x 7→ Df is continuous. By

Exercise 4, the composition x 7→ Dfx 7→ ||Dfx|| is continuous. Fix a point λ ∈
(
||Dfx0 ||, 1

)
.

Then there exists a small closed ball U = B(x0, δ) around x0 on which ||Dfx|| ≤ λ < 1.

By Proposition 1.3.11, if x, y ∈ U , then d(f(x), f(y)) ≤ λd(x, y). Moreover, for all x ∈ U ,
we have

d(f(x), x0) = d(f(x), f(x0)) ≤ λd(x, x0) ≤ λδ < δ.

This shows that f(U) ⊂ U , and f is a λ−contraction on U .

Suggested Reading 1.3.12. • [3, Section 2.2]
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1.4 Fractals

In this section we will define fractals and introduce self-similarity. We will also give an idea
of their connection with dynamical systems with some examples.

The Cantor Set

The simplest example of a fractal is the ternary cantor set.

Definition 1.4.1. Let I = [0, 1]. Inductively define closed subsets Cn ⊂ I for n ≥ 0 as
follows:

C0 =
[
0, 1

]
C1 = C0 \

(1
3
,
2

3

)
=

C0
3

∪
(C0
3

+
2

3

)
Cn =

Cn−1

3
∪
(Cn−1

3
+

2

3

)
= Cn−1 \

3n−1−1⋃
k=0

(3k + 1

3n
,
3k + 2

3n

)
for all n ≥ 2

It can be shown that the set Cn is the disjoint union of 2n closed intervals, each of length 1
3n
.

The ternary Cantor set is defined as

C =
∞⋂
n=0

Cn

We look at some of the properties of C.

1. C is closed, since it is the intersection of closed sets

2. C is compact, since it is a closed subset of a compact set.

3. C is non-empty.
For example, the points 0 and 1 belong to all the sets Cn, so they also belong to C.

4. C is uncountable.
We will show this by giving an explicit description of C.

Definition 1.4.2. Given a number x ∈ [0, 1], a base 3 (or ternary) expansion for x is
a sequence .α1α2α3 · · · with αn ∈ {0, 1, 2} for all n ∈ N such that

x =
α1

3
+

α2

32
+ · · · =

∞∑
n=1

αn

3n

The decimal point before the α’s indicate that the number is less than or equal to
1. More generally, for any real number y ∈ R. The ternary expansion of y is a
sequence βm−1βm−2 · · · β0.α1α2α3 · · · with βi ∈ {0, 1, 2} for all i ∈ {0, 1, 2, · · ·m − 1}
and αn ∈ {0, 1, 2} for all n ∈ N, such that

y =
m−1∑
i=0

βi · 3i +
∞∑
n=0

αn

3n
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Note that the ternary expansion of a number is not unique. For example,

1

3
=

∞∑
n=1

2

3n

So .100000 · · · and .0222222 · · · are both ternary expansions for 1
3
. Similarly, .200000 · · ·

and .1222222 · · · are both ternary expansions for 2
3
.

Exercise 1.4.3. Every number x ∈ R has only finitely many ternary expansions.

Remark 1.4.4. If x has a ternary expansion .α1α2α3 · · · , then x
3
has a ternary expansion

.0α1α2 · · ·

Proposition 1.4.5.

C = {x ∈ [0, 1] : there exists a ternary expansion .α1α2 · · · for x with αn ∈ {0, 2} for all n ∈ N}

Proof. We prove this by induction. Note that

C1 = {x ∈ [0, 1] : there exists a ternary expansion .α1α2 · · · for x with α1 ∈ {0, 2}}

Using the recursive formula for Cn, it is easy to show that

CN = {x ∈ [0, 1] : there exists a ternary expansion .α1α2 · · · for x with α1, α2, · · · , αN ∈ {0, 2}}

Since every x has only finitely many ternary expansions, for x to be in all the Cn’s,
there exists at least one ternary expansion which satisfies the condition αn ∈ {0, 2} for
all n ∈ N.

Since every sequence in {0, 2}N can be realized as the ternary expansion of a distinct
number x ∈ [0, 1], and the set {0, 2}N is uncountable, we see that C is uncountable.

5. C is perfect.

Definition 1.4.6. Let Y be a topological space. A subset X ⊂ Y is said to be perfect
if it is closed in Y and has no isolated points.

Proposition 1.4.7. For every x ∈ C, there exists a sequence (xn) of distinct points
with xn ∈ C and xn → x.

Proof. Given ϵ > 0, we will exhibit a point xN ̸= x such that |xN −x| < ϵ and xN ∈ C.
Choose N ∈ N such that 2

3N
< ϵ. This ensures that the interval of radius 1

3N
centered

at x is contained in the open ball Bϵ(x). Let Ĩ be the component interval of CN that

contains x. The above condition implies that Ĩ ⊂ Bϵ(x).

In CN+1, the middle third of Ĩ is deleted, and we get two component intervals Ĩ0 and
Ĩ1. Without loss of generality, assume x ∈ Ĩ0. Then pick a point y ∈ C ∩ Ĩ1. Note that
y ̸= x by this choice and since Ĩ1 ⊂ Bϵ(x), we have |y − x| < ϵ. Therefore we can set
xN = y.
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6. C is totally disconnected.

Definition 1.4.8. A topological space X is said to be totally disconnected if its only
non-empty connected subsets are singletons.

Proposition 1.4.9. If F ⊂ C is non-empty and connected, then F = {x} for some
point x ∈ C.

Proof. Suppose x, y ∈ C are two distinct points in F . WLOG, assume x < y. Pick
N ∈ N such that 1

3N−1 < |x− y|. Then, x and y are contained in distinct components
of CN . So there exists z ∈ (x, y) such that z ̸∈ C. Let A = F ∩ [0, z) and B = F ∩(z, 1].
Note that A ∪ B = F . Also note that the closures of A and B don’t intersect. This
contradicts the fact that F is connected.

7. C has Lebesgue measure 0.
Let µ denote Lebesgue measure. The set Cn is the union of 2n disjoint intervals, each
of length 3−n. Therefore, we have µ(Cn) = 2n

3n
. Since C1 ⊃ C2 ⊃ C3 ⊃ · · · and C is the

intersection of the Cn, we have

µ(C) = lim
n→∞

µ(Cn) = 0

The following theorem is the main result of this section. For a proof see [2].

Theorem 1.4.10 (Brouwer). Let Y ̸= ∅ be a complete metric space. If Y is compact, perfect
and totally disconnected, then it is homeomorphic to C.

An easy corollary, for example, is that C is homeomorphic to C × C.
Suggested Reading 1.4.11. • [3, Section 2.7.1]

Dynamical Systems on the Cantor Set

Consider the map f : [0, 1]×[0, 1] defined as f(x) = x
3
. It is easy to see that f is a contraction

and f(C) ⊂ C, and the unique fixed point in C is x = 0. Note that for every x ∈ C, there
exists a neighborhood U of x such that f : U −→ f(U) is a homeomorphism.
Also note that f induces the shift .α1α2α3 · · · → .0α1α2α3 · · · on ternary expansions.

Definition 1.4.12. A topological space X is said to be self-similar, or to have the rescaling
property, if there exists a contraction f : X −→ X such that for every x ∈ X and neigh-
borhood U of x, there exists a neighborhood V ⊂ U of x such that f : V −→ f(V ) is a
homeomorphism.

Remark 1.4.13. This is actually equivalent to saying that every x ∈ X has a neghborhood U
such that f : U −→ f(U) is a homeomorphism. Also note that the term self similar is used
in different ways in the literature; we will see by and by that this definition is not extensive
enough.

13



Exercise 1.4.14. Show that the function f(x) = 1− x
3
leaves C invariant, and is a contraction.

Describe the induced operation on ternary expansions, and find the unique fixed point of f
in C.
Exercise 1.4.15. Show that the function f(x) = x+2

3
(mod 1) leaves C invariant, and is a

contraction. Describe the induced operation on ternary expansions, and find the unique
fixed point of f in C.

The Square Sierpinksi Carpet

Figure 1.3: The set J3 of the Sierpinski carpet construction

Definition 1.4.16. Let J = [0, 1]× [0, 1] be the unit square. Define

J0 = J

J1 = J0 \
(1
3
,
2

3

)
×

(1
3
,
2

3

)
Jn = Jn−1 \

3n−1−1⋃
k=0

3n−1−1⋃
ℓ=0

(3k + 1

3n
,
3k + 2

3n

)
×
(3ℓ+ 1

3n
,
3ℓ+ 2

3n

)
The square Sierpinski carpet is the set J =

⋂∞
n=0 Jn.

Exercise 1.4.17. Prove that the Sierpinski carpet is self-similar.

The Sierpinski Triangle

Figure 1.4: The set ∆2 of the Sierpinski triangle construction

14



This set is similar to the Sierpinski carpet. Start with an equilateral triangle ∆0 of side
length 1, with one side horizontal. Let ∆1 be ∆0 minus its central equilateral triangle, ∆2

be ∆1 minus its three smaller central equilateral triangles and so on.
Define the Sierpinski triangle

∆ =
∞⋂
n=0

∆n

Exercise 1.4.18. Prove that the Sierpinski triangle is self-similar.

Exercise 1.4.19. Prove that J and ∆ both have infinite perimeter and finite area (Lebesgue
measure).

Exercise 1.4.20. Prove that neither J nor ∆ is homeomorphic to C.
Suggested Reading 1.4.21. • [3, Section 2.7.2]

Cantor Sets and Logistic Maps

Consider the logistic function f(x) = 5x(1−x) on R. Note that this function has one critical
point at x = 1

2
, and is symmetric around this point in the sense that

f(x) = f(1− x) for all x ∈ R

We make the following series of observations:

1. The graph of f is a downward drawn parabola, and its roots are x = 0, 1.

2. If x > 1, then f(x) < 0.

3. If x < 0, then f(x) < x and |f(f(x))− f(x)| > |f(x)− x|.

The points (2) and (3) show that if x ̸∈ [0, 1], then f ◦n(x) → −∞. This leads to the following
dichotomy:
For every x ∈ R, exactly one of the following is true:

• either f ◦n(x) ∈ [0, 1] for all n ∈ N, or

• f ◦m(x) ̸∈ [0, 1] for some m ∈ N, and thus, f ◦n(x) → −∞ as n → ∞.

Therefore, the set B of points x ∈ R such the orbit (f ◦n(x))n≥0 is bounded, is the set of
points x such that f ◦n(x) ∈ [0, 1] for all n. In other words,

B =
∞⋂
n=0

(f ◦n)−1[0, 1]

Proposition 1.4.22. B is a Cantor set (i.e., it is homeomorphic to C).

We will prove this in the next chapter.
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1.5 Topological Conjugacy

Definition 1.5.1. Let X, Y be topological spaces and suppose f : X −→ X and g : Y −→ Y
be dynamical systems. Then (X, f) and (Y, g) are said to be topologically conjugate if there
exists a homeomorphism φ : X −→ Y such that

g ◦ φ = φ ◦ f

In other words, φ is a homeomorphism that makes the following diagram commute:

X Y

X Y

φ

f g

φ

Note that for all n ∈ N,

g◦n = (φ ◦ f ◦ φ−1)◦n = (φ ◦ f ◦ φ−1) ◦ (φ ◦ f ◦ φ−1) ◦ · · · ◦ (φ ◦ f ◦ φ−1) = φ ◦ f ◦n ◦ φ−1

In particular, φ maps the f−orbit of x to the g−orbit of φ(x) for every x ∈ X. So topological
conjugacy is a form of equivalence between two dynamical systems.

Examples

Example 1.5.2. The map φ(x) = −1
2
x + 1

2
conjugates the dynamical systems f(x) = x2 and

g(x) = 2x(1− x) on R. Since φ is linear, we say that (R, f) and (R, g) are linearly/affinely
conjugate.

Exercise 1.5.3. Prove that every quadratic polynomial f : C −→ C is affine conjugate to a
polynomial of the form z2 + c for a unique c ∈ C.
Exercise 1.5.4. Let W and V be vector spaces over R, and suppose A : W −→ W and
B : V −→ V are linear maps. Show that if A and B are conjugate as linear maps, ie,
there exists an invertible linear map L : W −→ V such that LA = BL, then they are also
topologically conjugate in the sense defined in the previous section.

Logistic Map Revisited

We now revert back to our previous discussion of Cantor sets and the logistic map f(x) =
5x(1− x).

Let Σ = {0, 1}N = {s = s1s2 · · · |si ∈ {0, 1}∀i ∈ N} and σ : Σ → Σ be the map
s1s2s3 · · · 7→ s2s3 · · · . We will equip Σ with a topology under which σ is continuous.

Theorem 1.5.5. Given µ ̸= 0, let gµ(x) = µx(1 − x), and let Bµ ⊂ R be the set of points
with bounded orbits under gµ.

For µ > 4, the dynamical systems (Bµ, gµ) and (Σ, σ) are topologically conjugate.

Theorem 1.5.6. The set Σ is homeomorphic to the ternary Cantor set C.

These theorems imply Proposition 1.4.22. In the next chapter, we will prove Theorem 1.5.6,
and Theorem 1.5.5 for the smaller range µ > 2 +

√
5 > 4.
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Chapter 2

Symbolic Dynamics

To prove Theorems 1.5.5 and 1.5.6, we will need the powerful machinery of symbolic dynam-
ics. In the next section we will introduce its basic concepts.

2.1 Sequences over a finite alphabet

Let (X, dX) be a metric space, and A ⊂ X be a finite set with |A| ≥ 2.

Definition 2.1.1. The set of sequences with alphabet A is denoted ΣA. In other words,

ΣA = AN = {s = s1s2s3 · · · |sj ∈ A∀j ∈ N}

Topology on the Space of Sequences

We define a metric on ΣA as follows: for all s, t ∈ ΣA, we let

d(s, t) =
∞∑
j=1

dX(sj, tj)

|A|j−1
(2.1)

Proposition 2.1.2. The function d : ΣA × ΣA −→ R is well-defined.

Proof. We need to show that for all s, t ∈ ΣA, the infinite series given above converges. Let
M = maxp,q∈A dX(p, q).

d(s, t) =
∞∑
j=1

dX(sj, tj)

|A|j−1

≤
∞∑
j=1

M

|A|j−1
= M

∞∑
j=1

1

|A|j−1

=
M

1− 1
|A|

< ∞

17



Proposition 2.1.3. The function defined by Equation 2.1 is a metric on ΣA.

Proof. We need to show the following:

1. for all s, t ∈ ΣA, d(s, t) ≥ 0 ;

2. for all s, t ∈ ΣA, d(s, t) = 0 ⇐⇒ s = t;

3. for all s, t, r ∈ ΣA, d(s, r) ≤ d(s, t) + d(t, r).

We will see these one by one.

1. is clear since every term in the infinite sequence defining d(s, t) is non-negative.

2. is clear since if d(s, t) = 0, then dX(sj, tj) = 0 for all j ∈ N, which implies sj = tj for
all j ∈ N.

3. for every j ∈ N, dX(sj, rj) ≤ dX(sj, tj) + dX(tj, rj). This immediately shows (3).

The metric d induces a topology on ΣA. We will see some properties of this topology in the
remaining section.

Remark 2.1.4. By scaling the metric dX if necessary, from now on we assume without loss
of generality that M = maxp,q∈A dX(p, q) = 1.

Proposition 2.1.5. Suppose s, t ∈ ΣA satisfy sj = tj for j = 1, 2, · · · , N . Then

d(s, t) <
1

|A|N−1(|A| − 1)
≤ 1

|A|N−1

Proof. The second inequality follows directly since 1
|A|−1

≤ 1.
Since sj = tj for j = 1, · · · , N ,

d(s, t) =
N∑
j=1

dX(sj, tj)

|A|j−1
+

∞∑
j=N+1

dX(sj, tj)

|A|j−1

=
∞∑

j=N+1

dX(sj, tj)

|A|j−1

≤
∞∑

j=N+1

1

|A|j−1

=
1

|A|N
1

1− 1
|A|

=
|A|

|A|N(|A| − 1)

=
1

|A|N−1(|A| − 1)
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Proposition 2.1.6. There exists a constant ℓ = ℓ(A) > 0 such that if s, t ∈ ΣA satisfy
d(s, t) < ℓ

|A|N−1 , then sj = tj for j = 1, 2, · · · , N .

Proof. Let ℓ = minp,q∈A
p̸=q

dX(p, q). We will prove the contrapositive. Given s, t ∈ ΣA, if sj ̸= tj

for some j ∈ {1, 2, · · · , N}, then

d(s, t) ≥ dX(sj, tj)

|A|j−1
≥ ℓ

|A|j−1
≥ ℓ

|A|N−1

2.2 Shift Operator on Sequences

Definition 2.2.1. The shift operator σ : ΣA −→ ΣA is defined as

σ(s1s2s3 · · · ) = s2s3s4 · · · for all s = s1s2s3 · · · ∈ ΣA (2.2)

Proposition 2.2.2. The map σ is surjective and uniformly continuous.

Proof. Given s ∈ ΣA, for any a ∈ A, σ(as1s2s3 · · · ) = s. Therefore σ is surjective.
To show it is uniformly continuous, we will exhibit for a given ϵ > 0, a constant δ > 0 such
that for all s, t ∈ ΣA, d(s, t) < δ =⇒ d(σ(s), σ(t)) < ϵ.

Fix ϵ > 0. Choose N ∈ N such that 1
|A|N−1 < ϵ. Let δ = ℓ

|A|N , where ℓ is the constant

from Proposition 2.1.6. Then, we have sj = tj for j = 1, 2, · · · , N + 1. Let σ(s) = s and
t = σ(t). Note that sj = sj+1 and tj = tj+1 for all j ∈ N. The above condition implies that
sj = tj for j = 1, 2, · · · , N . Therefore by Proposition 2.1.5, we have d(s, t) < 1

|A|N−1 < ϵ.

Periodic Sequences

Definition 2.2.3. For m ∈ N, define

Perm(σ) = {s ∈ ΣA|σ◦m(s) = s}

In other words, Perm(σ) is the set of sequences whose period under σ divides m.
Also define Per(σ) to be the set of sequences periodic under σ.

Remark 2.2.4. The following properties of periodic sequences are immediate.

1.

Per(σ) =
∞⋃

m=1

Perm(σ)

2. Given a finite word w = s1s2 · · · sn with si ∈ A for all i, we let w denote the infinite
word s1s2 · · · sns1s2 · · · sns1s2 · · · sn · · · formed by repeating the finite block w.
Given m ∈ N,

Perm(σ) = {s1s2 · · · sm : sj ∈ A for j = 1, 2, · · · ,m}.

This shows that
|Perm(σ)| = |A|m
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3. If m < n and m|n, then
Perm(σ) ⊊ Pern(σ)

Proposition 2.2.5. Per(σ) is dense in ΣA.

Proof. Given s ∈ ΣA and ϵ > 0, pick N ∈ N such that 1
|A|N−1 < ϵ. Then by Proposition 2.1.5,

the sequence t ∈ Per(σ) given by

t = s1s2 · · · sNs1s2 · · · sNs1s2 · · · = s1s2 · · · sN

satisfies

d(s, t) <
1

|A|N−1
< ϵ

Suggested Reading 2.2.6. • [1, Section 1.6]

Logistic Maps Conjugate to the Shift

In this section we will establish Theorem 1.5.5 for the family of maps gµ(x) = µx(1 − x)
where µ > 2+

√
5. The proof for the full range µ > 4 uses techniques from complex analysis,

so we will see this later.
Recall the definition of the set Bµ: this is the set of points x with bounded orbit under
the map gµ. Just as we did for µ = 5, we will show that for a range of µ values, the set
Bµ ⊂ [0, 1].

Proposition 2.2.7. When µ > 1, for x ̸∈ [0, 1], g◦nµ (x) → −∞ as n → ∞.

Proof. First, observe that the graph of gµ is a downward drawn parabola which intersects
the x-axis at the two roots x = 0, 1.

If x < 0, then gµ(x) = µx−µx2 < µx < x. So the terms of the orbit g◦nµ (x) become more
and more negative as n increases. Now we show that the monotone decreasing sequence
x, gµ(x), g

◦2
µ (x), · · · does not stay bounded. Suppose to the contrary, then there exists p < 0

such that g◦nµ (x) → p. On the one hand we have g
◦(n+1)
µ (x) → gµ(p) < p, but on the other

hand, the sequence (g
◦(n+1)
µ (x))n≥0, as a tail of the sequence (g◦nµ (x))n≥0, also converges to

p. This proves that g
◦(n+1)
µ (x) → −∞.

If x > 1, then gµ(x) < 0. By the discussion above, g◦nµ (x) → −∞.

Proposition 2.2.8. For µ > 1,

Bµ =
⋂
n≥0

(g◦nµ )−1[0, 1]

If 1 < µ ≤ 4, then Bµ = [0, 1].
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Proof. The previous proposition shows that Bµ ⊆ [0, 1] for all µ > 1, and moreover, that
x ∈ Bµ if and only if g◦nµ (x) ∈ [0, 1] for all n ∈ N.
In other words,

Bµ =
⋂
n≥0

{x ∈ R : g◦nµ (x) ∈ [0, 1]} =
⋂
n≥0

(g◦nµ )−1[0, 1].

Note that x = 1
2
is the unique point where gµ reaches its maximum, and gµ

(
1
2

)
= µ

4
.

Thus, if 1 < µ ≤ 4, then since µ
4
≤ 1, we have

gµ[0, 1] ⊆ [0, 1]

=⇒ [0, 1] ⊆ g−1
µ [0, 1]

Since we know that g−1
µ [0, 1] ⊆ [0, 1], this shows that Bµ = [0, 1].

Thus the interesting structure of Bµ occurs when µ > 4.

Proposition 2.2.9. Fix µ > 4. Let cµ =
√

1
4
− 1

µ
, and define the disjoint intervals I0 =[

0, 1
2
− cµ

]
and I1 =

[
1
2
+ cµ, 1

]
. Then

g−1
µ [0, 1] = I0 ∪ I1

Proof. Solving gµ(x) = 1, we get

µx− µx2 = 1

=⇒ µx2 − µx+ 1 = 0

=⇒ x =
µ±

√
µ2 − 4µ

2µ

=
1

2
±

√
µ2 − 4µ

4µ2

=
1

2
±
√

1

4
− 1

µ

=
1

2
± cµ

Note that gµ[0, 1] =
[
0, µ

4

]
. Since 1

2
is the point where gµ is maximum, and the graph of gµ

is symmetric about the vertical line x = 1
2
, we get

gµ

(1
2
− cµ,

1

2
+ cµ

)
=

(
1,

µ

4

]
Thus, we have, for I0 and I1 as above, that

gµ(I0 ∪ I1) =
[
0,

µ

4

]
\
(
1,

µ

4

]
= [0, 1]

21



Note that the intervals I0 and I1 above are disjoint. Note that gµ(I0) = gµ(I1) = [0, 1],
so (g◦2µ )−1[0, 1] = g−1

µ (I0 ∪ I1) = I00 ∪ I01 ∪ I10 ∪ I11. here I00 ∪ I01 =.

Definition 2.2.10. We introduce the notation Σ0 for the set of finite non-empty words over
the alphabet {0, 1}. Formally,

Σ0 =
⋃
N≥1

{w = s1s2 · · · sN |si ∈ {0, 1} for i = 1, 2, · · · , N} =
⋃
N≥1

{0, 1}N

We let ℓ(w) denote the length of the finite word w.

Definition 2.2.11. Given w = s1s2 · · · sN ∈ Σ0, define the set Iw ⊆ [0, 1] as follows:

Iw = {x ∈ [0, 1] : x ∈ Is1 , gµ(x) ∈ Is2 , · · · , g◦(n−1)
µ (x) ∈ Isn}

=
N⋂
j=1

{x ∈ [0, 1] : g◦(j−1)
µ (x) ∈ Isj}

=
N⋂
j=1

(g◦(j−1)
µ )−1(Isj)

Proposition 2.2.12. The collection of intervals {Iw : w ∈ Σ0} satisfies

1. Given w = s1 · · · sN ∈ Σ0 and a symbol sN+1 ∈ {0, 1}, we have IwsN+1
⊆ Iw.

2. Given w = s1 · · · sN ∈ Σ0 and a symbol s0 ∈ {0, 1}, the map gµ maps Is0w homeomor-
phically onto Iw.

3. Iw is a closed interval of non-zero length for all w ∈ Σ0.

4. Given distinct words w1, w2 ∈ {0, 1}N , Iw1 ∩ Iw2 = ∅.

5. for all N ∈ N, (g◦Nµ )−1[0, 1] =
⋃

w∈{0,1}N Iw.

Proof. We will show them one by one.

1. Note that IwsN+1
= Iw ∩ {x : g◦Nµ (x) ∈ IsN+1

} ⊆ Iw.

2. Note that Is0w = {x : x ∈ Is0 and gµ(x) ∈ Iw}. In other words, Is0w is the full pre-
image of Iw in either I0 or I1, depending on the value of s0. Since gµ is monotonic on
both I0 and I1, and gµ(I0) = gµ(I1) = [0, 1], we get that gµ(Is0w) = [0, 1], and that the
mapping is a homeomorphism.

3. By definition, Iw is an intersection of closed sets, and by the previous point, by induc-
tion on ℓ(w), it is easy to see that it is a closed interval with non-zero length.

4. Without loss of generality suppose the jth entry of w1 and w2 are 0 and 1 respectively.
Then g

◦(i−1)
µ Iw1 ⊆ I0 and g

◦(i−1)
µ Iw2 ⊆ I1. Since for a point x we cannot have g

◦(i−1)
µ in

both I0 and I1, this shows that Iw1 ∩ Iw2 = ∅.
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5. We do this by inducting on N . When N = 1, g−1
µ [0, 1] = I0 ∪ I1.

Induction hypothesis: the statement is true for N .
Induction step: for N + 1,

(g◦(N+1)
µ )−1[0, 1] = g−1

µ

(
(g◦Nµ )−1[0, 1]

)
= g−1

µ

( ⋃
w∈{0,1}N

Iw

)
=

⋃
w∈{0,1}N

g−1
µ Iw

=
⋃

w∈{0,1}N
(I0 ∩ g−1

µ Iw) ∪ (I1 ∩ g−1
µ Iw) (since g−1

µ Iw ⊆ I0 ∪ I1)

=
⋃

w∈{0,1}N
I0w ∪ I1w (by the proof of point (2))

=
⋃

w∈{0,1}N+1

Iw

From here, let Σ = Σ{0,1}.

Proposition 2.2.13. Fix µ > 2 +
√
5. Given any s1s2 · · · =: s ∈ Σ, there exists a unique

point xs ∈ Bµ such that
∞⋂

N=1

Is1s2···sN = {xs}

Proof. We first show that it suffices to prove the following claim:

Claim 1. There exists a constant λ > 1 such that for all N ∈ N and all w ∈ {0, 1}N ,

diam(Iw) ≤
1

λN−1
· diam(I0)

Proposition 2.2.12 implies Is1 ⊇ Is1s2 ⊇ Is1s2s3 · · · . Therefore, the infinite intersection

diam
(⋂∞

N=1 Is1s2···sN

)
is a non-empty closed set. By Claim 1, diam

(⋂∞
N=1 Is1s2···sN

)
= 0, so

this infinite intersection is a singleton {xs}. This point xs is in Bµ since g◦Nµ (xs) ∈ IsN ⊂ [0, 1]
for all N ∈ N.

Now it is left for us to prove claim 1. We first show the following:

Claim 2. |g′µ(x)| >
√

µ2 − 4µ > 1 for all x in the interiors of I0 and I1.

Proof of Claim 2. If x is in the interior of I0 or I1, then

|g′(x)| = |µ(1− 2x)| = 2µ
∣∣∣1
2
− x

∣∣∣
> 2µcµ = 2µ ·

√
1

4
− 1

µ

=
√

µ2 − 4µ >

√
(2 +

√
5)2 − 4(2 +

√
5) (since µ 7→ µ2 − 4µ is increasing for µ > 2)

=
√
4 + 5− 8 = 1
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■

Thus for all x ∈ I0 ∪ I1, we have |g′µ(x)| ≥
√
µ2 − 4µ > 1.

Proof of Claim 1. Let λ =
√
µ2 − 4µ. Given w ∈ {0, 1}N with w = s1s2s3 · · · sN , note that

since g
◦(N−1)
µ : Iw −→ Is1 is a diffeomorphism, looking at the inverse map f = (g

◦(N−1)
µ )−1

and using the fact that |f ′(x)| = 1∣∣(g◦(N−1)
µ

)′
(f−1(x))

∣∣ , for all x, y ∈ Is1 ,

|f(x)− f(y)| ≤ |f ′(x)||x− y| ≤ 1

λN−1
|x− y|

Thus,

diam(Iw) ≤
1

λN−1
diam(Is1) =

1

λN−1
diam(I0)

■

This finishes the proof of the proposition.

Definition 2.2.14. Fix µ > 2 +
√
5. Define a map φ : Σ −→ Bµ by setting φ(s) = xs for

all s ∈ Σ.

Proposition 2.2.15. φ is a homeomorphism.

Proof. φ is injective: If s ̸= t, choose N ∈ N such that sN ̸= tN . Since φ(s) = xs ∈ Is1s2···sN
and φ(t) = xt ∈ It1···tN , and by the condition sN ̸= tN we have Is1···sN ∩ It1···tN = ∅, we must
have φ(s) ̸= φ(t).

φ is surjective: If x ∈ Bµ, for all n ∈ N, let sn = 0 if g
◦(n−1)
µ (x) ∈ I0 and sn = 1 if

g
◦(n−1)
µ (x) ∈ I1. Then it is easy to check that φ(s1s2s3 · · · ) = x.

φ is continuous: Given s ∈ Σ and ϵ > 0, since the diameter of Iw tends to 0 as ℓ(w) → ∞,
choose N ∈ N such that Is1s2···sN ⊂ Bϵ(x). Then set δ = 1

2N
. By Proposition 2.1.6, if

d(s, t) < δ, then tj = sj for j = 1, 2, · · ·N . Thus φ(t) ∈ It1···tN = Is1···sN , and by our assump-
tion on N , we have |φ(t)− φ(s)| < ϵ.

φ−1 is continuous: Given x ∈ Bµ and ϵ > 0, let s = φ−1(x). Choose N ∈ N such that
1

2N−1 < ϵ, and choose δ > 0 such that Bδ(x) ⊂ Is1s2···sN . Then, for any y ∈ Bδ(x) ∩ Bµ, the
sequence t = φ−1(y) satisfies tj = sj for j = 1, 2, · · · , N . By Proposition 2.1.5, we know that
d(s, t) < 1

2N−1 < ϵ.

Proposition 2.2.16. φ conjugates σ to gµ.

Proof. For all s ∈ Σ,

φ(s) ∈
∞⋂

N=1

Is1···sN

=⇒ gµ(φ(s)) ∈
∞⋂

N=1

gµ(Is1···sN ) =
∞⋂

N=1

Is2s3···sN

= {φ(σ(s))}
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In other words, gµ ◦ φ = φ ◦ σ.

Propositions 2.2.15 and 2.2.16 together prove Theorem 1.5.5.

Now let A be a finite alphabet with |A| ≥ 2

Proposition 2.2.17. The space ΣA is a complete metric space.

Proof. We already know that ΣA is a metric space. To see that it is complete, we need to
show that every Cauchy sequence converges.

Let (sn)n≥0 be a Cauchy sequence. Note that each sn is a sequence of the form sn1s
n
2s

n
3 · · ·

with snj ∈ A for all j ∈ N.
Claim 1. For every j ∈ N, the terms snj are eventually constant as n → ∞.

Proof of Claim 1. Fix j. Let ℓ = minp,q∈A
p̸=q

dX(p, q). Since (sn)n≥0 is Cauchy, there exists

N ∈ N such that for all m,n ≥ N , d(sn, sm) < ℓ
|A|j−1 .

By Proposition 2.1.6, we have snj = smj for all m,n ≥ N . ■

Due to Claim 1, we can define for every j the symbol sj = limn→∞ snj . Since the sequence
(snj )n≥0 is eventually constant, sj ∈ A. Consider the sequence s ∈ ΣA given by s = s1s2s3 · · · .
Claim 2. The Cauchy sequence (sn)n≥0 converges to s.

Proof of Claim 2. Given ϵ > 0, choose N ∈ N such that 1
|A|N−1 < ϵ. By Claim 1, we can

choose M ∈ N such that for all n ≥ M , we have

sn1s
n
2 · · · snN = s1s2 · · · sN

By Proposition 2.1.5, for n ≥ M we have d(s, sn) ≤ 1
|A|N−1 < ϵ. ■

Proposition 2.2.18. 1. ΣA has bounded diameter.

2. ΣA is totally bounded: that is, given any ϵ > 0, it can be covered by finitely many
ϵ−balls.

Proof. 1. For all s, t ∈ ΣA, we have d(s, t) =
∑∞

j=1
dX(sj ,tj)

|A|j−1 ≤
∑∞

j=1
1

|A|j−1 ≤ 1
1− 1

|A|
.

2. Given ϵ > 0, choose N ∈ N such that 1
|A|N−1 < ϵ. Consider the set of words WN = AN

(these are the finite words of length N over A). Since A is finite, WN is finite. Fix any
element a ∈ A, and consider the finite set of sequences S = {waaa · · · |w ∈ WN} ⊂ ΣA.

Given any t ∈ ΣA, there exists s = waaaa · · · ∈ S such that w = t1t2 · · · tN . Thus

d(s, t) <
1

|A|ℓ−1
< ϵ
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by Proposition 2.1.5 and our choice of N .

Thus the finite collection of ϵ−balls {Bϵ(s) : s ∈ S} covers ΣA.

Corollary 2.2.19. ΣA is compact.

Remark 2.2.20. In class I claimed that bounded diameter of ΣA is sufficient for compactness;
this is in fact not true, and uniform boundedness is necessary.

Proof. A metric space is compact if and only if it is complete and totally bounded.

Proposition 2.2.21. ΣA is perfect.

We will prove this proposition by showing that there exists an element s ∈ ΣA such that
every t ∈ ΣA can be approximated by elements of the form σ◦n(s).

Suggested Reading 2.2.22. • [1, Section 1.5]

• [3, Section 7.3.4, Section 7.4.3]

Topological Transitivity

Definition 2.2.23. Let X be a topological space and f : X −→ X be a dynamical system
on X.

• If f is not invertible, it is said to be topologically transitive if there exists a point
x0 ∈ X such that the orbit (f ◦n(x0))n≥0 is dense in X.

• If f is invertible, it is said to be topologically transitive if there exists a point x0 ∈ X
such that the grand orbit (f ◦n(x0))n∈Z, which is the union of the forward and backward
orbits of x0, is dense in X.

Proposition 2.2.24. The shift operator σ : ΣA −→ ΣA is topologically transitive.

Corollary 2.2.25. ΣA is perfect.

Proof of Proposition 2.2.24. Since σ is not invertible, we need to prove the existence of a
dense orbit (σ◦n(s))n≥0. We will do this constructively by defining s.

1. For N ∈ N, let WN = AN be the set of finite words of length N over the alphabet A.
Since WN is finite, we may enumerate all the words of WN as w1, w2, · · ·wr, and form
a master word w̃1 = w1w2w3 · · ·wr.

For example, if A = {0, 1} and N = 1, we have W1 = {0, 1} and we can take w̃1 = 10.
Similarly, W2 = {00, 01, 10, 11} and we can take w̃2 = 00011011.

2. Define s ∈ ΣA as
s = w̃1w̃2w̃3 · · ·

For example when A = {0, 1}, with w̃1 and w̃2 as above, we have s = 1000011011 · · · .

26



To see that s has a dense orbit under σ, given any t ∈ ΣA and ϵ > 0, we will show that
there exists m ∈ N such that d(σ◦m(s), t) < ϵ.

Choose N ∈ N such that 1
|A|N−1 < ϵ. The finite word t1t2 · · · tN is a sub-string of the

master word w̃N . By definition of s, there exists m ∈ N such that

σ◦m(s) = t1t2 · · · tN · · ·

By Proposition 2.1.5 and our choice of N , we have

d(σ◦m(s), t) <
1

|A|N−1
< ϵ

Proposition 2.2.26. For µ > 2 +
√
5, the set Bµ is totally disconnected.

Proof. This proof is left as an exercise to the reader; it follows the same lines as Proposi-
tion 1.4.5, point 6. We will need to use Claim 1 from Proposition 2.2.13.

Corollary 2.2.27. The shift space Σ = Σ{0,1} is totally disconnected.

Proof. By Proposition 2.2.15, we know Σ is homeomorphic to Bµ for µ > 2 +
√
5. By

Proposition 2.2.26, the statement follows.

Proposition 2.2.17 and Corollaries 2.2.19, 2.2.25 and 2.2.27 show that Σ satisfies all the
conditions of Theorem 1.4.10. Thus we get that Σ is homeomorphic to the ternary Cantor
set C, and thereby finish the proof of Theorem 1.5.6.
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Chapter 3

Low-Dimensional Dynamics

3.1 Basic Concepts

Throughout this section we assume that X is a topological space and f : X → X is a
continuous map.

Definition 3.1.1. Given x ∈ X,

• The orbit of x under f is the sequence (f ◦n(x))n≥0

• The grant orbit of x under f is the set {z ∈ X|f ◦m(z) = f ◦n(x) for some m,n ∈ N}

• A bi-infinite orbit for x under f is a sequence (xn)n∈Z, where x0 = x, and xn+1 = f(xn)
for all n ∈ Z.

Remark 3.1.2. A point x can have more than one bi-infinite orbit.
The grand orbit of x contains its orbit and any bi-infinite orbit. If f is a homeomorphism,
then there is only one bi-infinite orbit for x, which is the whole grand orbit.

Definition 3.1.3. Given m ∈ N,

Perm(f) = {x ∈ X : f ◦m(x) = x}

This is the set of periodic points under f whose period under f divides m.

Per(f) =
∞⋃

m=1

Perm(f)

This is the set of periodic points under f .

Definition 3.1.4. Let A ⊆ X. A is said to be forward invariant under f if f(A) ⊆ A, and
backward invariant under f if f−1(A) ⊆ A.
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Transitivity, Mixing and Chaos

We restate the definition of topological transitivity here.

Definition 3.1.5. • If f is not invertible, it is said to be topologically transitive if there
exists a point x0 ∈ X such that the orbit (f ◦n(x0))n≥0 is dense in X.

• If f is invertible, it is said to be topologically transitive if there exists a point x0 ∈ X
such that the grand orbit (f ◦n(x0))n∈Z, which is the union of the forward and backward
orbits of x0, is dense in X.

Definition 3.1.6. Suppose f is a homeomorphism. It is said to be minimal if the grand
orbit of every point is dense in X.

Remark 3.1.7. Minimality =⇒ Topological Transitivity.

Definition 3.1.8. f is said to be chaotic if it is topologically transitive and Per(f) is dense
in X.

Definition 3.1.9. f is said to be topologically mixing if for every pair of non-empty open
sets U, V ⊆ X, there exists N ∈ N such that for all n ≥ N , we have f ◦(U) ∩ V ̸= ∅.

3.2 Circle Maps

We can represent the circle S1 in two different ways:

• As the set R/Z = {[x] : x ∈ R}, where [x] = [y] iff x− y ∈ Z.

• As the set {e2πix : [x] ∈ R/Z} ⊂ C, i.e., the visual representation of R/Z on the
complex plane.

Definition 3.2.1. The arc length metric on S1 ∼= R/Z is given by

dS1([x], [y]) = min{|x′ − y′| : x′, y′ ∈ R, x′ ∈ [x], y′ ∈ [y]} for all x, y ∈ S1

Exercise 3.2.2. Prove that dS1([x], [y]) is the length of the shorter arc formed by e2πix and
e2πiy on the unit circle in the complex plane.

Rotations

Definition 3.2.3. Let α ∈ R/Z. The rotation map Rα : S1 → S1 is defined as

Rα([x]) = [x+ α] (additive representation)

Rα(e
2πix) = e2πiαe2πix = e2πi(α+x) (multiplicative representation)

Note that every rotation Rα is a homeomorphism of S1; its inverse is R−α. Every rotation
is in fact an isometry in the metric dS1 . That is, dS1(Rα(x), Rα(y)) = dS1(x, y) for all x, y ∈ S1.

These maps exhibit widely different behavior when α ∈ Q/Z vs. when α ̸∈ Q/Z.
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Proposition 3.2.4. • If α ∈ Q/Z, then Per(Rα) = S1.

• If α is irrational, then Per(Rα) = ∅.

Proof. • If α is rational, it is of the form α = m
n
, where m,n ∈ Z and n ̸= 0. Thus

R◦n
α ([x]) = [x+ nα] = [x+m] = [x] for all [x] ∈ R/Z

In other words, R◦n
α = idS1 . Thus Pern(Rα) = S1, which implies Per(Rα) = S1.

• If α is irrational and [x] ∈ S1 is a periodic point of Rα of period n for some n ∈ N, then
[x+ nα] = [x], which implies nα ∈ Z. But this means α has a rational representative,
which is a contradiction.

Proposition 3.2.5. Let f : X → X be an open map. Then if f is topologically transitive,
there exist no pair of disjoint non-empty open sets U and V such that f(U) ⊆ U and
f(V ) ⊆ V .

We will prove Proposition 3.2.5 later on. However, since Rα is a homeomorphism, and
thus open, using this proposition we will show the following.

Proposition 3.2.6. If α ∈ Q/Z, then Rα is not topologically transitive.

Proof. We will find a pair of disjoint, invariant non-empty open sets, showing the contrapos-
itive of Porposition 3.2.5. Choose any two points u, v ∈ S1. We know that α is of the form
m
n
for some m,n ∈ Z, n ̸= 0.

Choose ϵ > 0 so that the open intervals Bϵ(u), Rα(Bϵ(u)), · · · , R◦(n−1)
α (Bϵ(u)),

Bϵ(v), Rα(Bϵ(v)), · · · , R◦(n−1)
α (Bϵ(v)) are all pairwise disjoint. Then, letting U =

⋃n−1
j=0 R

◦j
α (Bϵ(u))

and V =
⋃n−1

j=0 R
◦j
α (Bϵ(v)), we see that U ∩ V = ∅, U and V are non-empty, f(U) = U and

f(V ) = V .

Proposition 3.2.7. If α ̸∈ Q/Z, then Rα is minimal. This in turn implies it is topologically
transitive.

Proof. Fix x ∈ S1. It suffices to show that the grand orbit of x is dense in S1. We will in
fact show the stronger statement that the forward orbit (R◦n

α (x))n≥0 is dense in S1.

Let z ∈ S1 and ϵ > 0. We need to exhibit an orbit point R◦n
α (x) ∈ Bϵ(z).

For N ≥ ⌊1
ϵ
⌋ + 1, any set of N points on S1 contains at least two points u, v such that

dS1(u, v) < ϵ.

Let S = {x,Rα(x), · · · , R◦(N−1)
α (x)}. Since α is irrational, this points listed here are dis-

tinct, so |S| = N . By the above statement, there exist ℓ, k with 0 ≤ ℓ < k ≤ N such that
dS1(R

◦ℓ
α (x), R

◦k
α (x)) < ϵ.

Since Rα is an isometry, we have dS1(x,R
◦(k−ℓ)
α (x)) < ϵ.

Claim. If dS1(x,R
◦n
α (x)) < ϵ for some n ∈ N, then for all y ∈ S1, we have dS1(y,R

◦n
α (y)) < ϵ.
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Proof of Claim. We know that y = Ry−x(x). Thus,

dS1(y,R
◦n
α (y)) = dS1(Ry−x(x), R

◦n
α ◦Ry−x(x))

= dS1(Ry−x(x), Ry−x ◦R◦n
α (x)) since RαRβ = RβRα for all α, β ∈ S1

= dS1(x,R
◦n
α (x)) since all rotations are isometries

< ϵ

■

By the above claim, letting y = 0, we have dS1(0, R
◦(ℓ−k)
α (0)) < ϵ.

Note that dS1(0, R
◦(ℓ−k)
α (0)) = |θ|, where θ = [(ℓ− k)α] ∈ S1.

By this choice of θ, for M ≥ ⌊1
θ
⌋ + 1, the points {x,Rθ(x), · · · , R◦(M−1)

θ (x)} split the
circle into intervals all of length < ϵ. Thus there exists n ∈ {0, 1, · · · ,M − 1} such that

dS1(R
◦n
θ (x), z) < ϵ. Since R◦n

θ (x) = R
◦n(ℓ−k)
α (x), the proposition follows.

Proposition 3.2.8. No circle rotation is chaotic.

Proof. By the above series of propositions, rational rotations are not topologically transitive,
and irrational rotations have no periodic points. So neither kind of rotations are chaotic.

Proposition 3.2.9. No homeomorphism f : S1 → S1 is topologically mixing.

Proof. Pick any three distinct points x, y, z ∈ S1. Then S1 \ {x, y, z} is the union of three
disjoint intervals A,B and C. For N ∈ N, let BN = {f ◦N(X) ∩ Y |X, Y ∈ {A,B,C}}. It
suffices to show the following claim:

Claim. For all N ∈ N, at least one element of BN is empty.

Here is how this claim proves that f is not topologically mixing: by the claim, for all
N , there are sets XN , YN ∈ {A,B,C} such that f ◦N(XN) ∩ YN = ∅. Then, since {A,B,C}
is finite, upto some subsequence, XN is constant and YN is constant. So wlog, up to a
subsequence Nk → ∞, we can assume XNk

= A and YNk
= B, say. Thus, the claim implies

that f ◦n(A)∩B = ∅ for infinitely many natural numbers n. This means f is not topologically
mixing.

Proof of Claim. Fix N ∈ N. Since A,B,C are pairwise disjoint, and f ◦N is a homeomor-
phism for all N , the intervals f ◦N(A), f ◦N(B), f ◦N(C) are pairwise disjoint. Suppose f ◦N(A)
intersects A, B and C. Then it has to contain one of the intervals - wlog suppose f ◦N(A) ⊇ A.
But this means that f ◦N(B) ∩ A = f ◦N(C) ∩ A = ∅. Thus not all elements of BN can be
simultaneously non-empty.

■
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Lifts

Definition 3.2.10. Given f : S1 → S1 continuous, a lift of f is a continuous map G : R → R
that satisfies f ◦ π = π ◦G for the universal covering map π : R → S1.

Proposition 3.2.11. Let f : S1 → S1 be continuous.

1. For any [x0] ∈ S1 represented by some point x0 ∈ R, let y0 ∈ R be such that f([x0]) =
[y0]. Then there exists a lift G of f such that G(x0) = y0.

2. Any two lifts of f differ by a constant C ∈ Z.

3. Let G be a lift of f . Then deg f := G(x+ 1)−G(x) is an integer that is independent
of x,G. This is called the degree of f .

Proof. We will prove each point one by one. Let A = f−1(y0) = {[xr] = [x0 + 1] =
[x0], [x1], [x2], · · · , [xr−1]} where the points are in counterclockwise order starting at [x0].
Let yn = y0 + n for n ∈ Z and consider πn = π|[yn, yn+1). Note that πn is a continuous
bijection onto S1 whose inverse is continuous on S1 \ {[y0]}.

1. We show this in the following steps:

• Define G on [x0, x1] as follows. Starting at x0 ∈ R, move counterclockwise from
[x0] on the circle. In this process, f(π(x)) = f([x]) starts traveling either clockwise
or anticlockwise on the circle from [y0]. Let ∆ = ±1 depending on whether this
movement is clockwise or counterclockwise, and define G on [x0, x1) as G(x0) = y0
and G(x) = π−1

∆ ◦f ◦π(x) for all x ∈ (x0, x1). Note that at the end of this process,
limx→(x1)− G(x) = y0 or y0+∆. In both cases, we uniquely extend G continuously
to [x0, x1]. Note that in this process, G satisfies π ◦G = f ◦ π.

• Inductively for some i ∈ {1, 2, · · · , r − 2}, suppose G is well-defined on [xi−1, xi]
and satisfies f ◦ π = π ◦ G. We will extend G to [xi, xi+1]. Set ∆ = 1 if f does
not change direction at [xi], or ∆ = −1 otherwise. Extend G continuously to
[xi, xi+1) by defining it to be G(x) = π−1

G(xi)−y0+∆◦f ◦π on (xi, xi+1) and G(xi+1) =

limx→x−
i+1

G(x). At the end of this process, G(xi+1) = G(xi) or G(xi) + ∆. Note

that G(x0 + 1)−G(x0) ∈ Z. Clearly G satisfies π ◦G = f ◦ π on [x0, x0 + 1].

• This finishes the definition of G on [x0, xr] = [x0, x0 + 1]. Inductively for n ∈ Z
with n ̸= 0, for x ∈ [x0+n, x0+n+1], let G(x) = G(x−n)+n(G(x0+1)−G(x0)),

G is continuous on (x0 + n, x0 + n + 1) for all n ∈ Z. We will show that it is
continuous at each point of the form x0 + n.

lim
x→(x0+n)−

G(x) = lim
x→(x0+n)−

G(x− (n− 1)) + (n− 1)(G(x0 + 1)−G(x0))

= nG(x0 + 1)− (n− 1)G(x0)

lim
x→(x0+n)+

G(x) = lim
x→(x0+n)+

G(x− n) + n(G(x0 + 1)−G(x0))

= nG(x0 + 1)− (n− 1)G(x0)

Also note that G(x) − G(x − n) ∈ Z for all n, x. This, along with the definition
of G on [x0, x0 + 1], shows that π ◦G = f ◦ π.
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2. LetG1 andG2 be two lifts of f . Then by definition, for all x ∈ R, π(G1(x)) = f(π(x)) =
π(G2(x)), and thus G1(x)−G2(x) is an integer. Since G1−G2 is a continuous function
from R to Z, it is a constant.

3. Let G be a lift of f . We note that the function G̃(x) = G(x + 1) is also lift of f . By

the previous point, G̃(x)−G(x) = G(x + 1)−G(x) is an integer that is independent
of x ∈ R. To show that it is independent of G, note that for any other lift H, we have
H = G+ c for some c ∈ Z, and thus H(x+1)−H(x) = G(x+1)−G(x) for all x ∈ R.

Proposition 3.2.12. If f is an injective continuous map , then | deg f | = 1 and any lift G
is strictly monotone.

Proof. Let G be a lift of f . First we show that | deg f | = 1. If deg f = 0, then G(1) = G(0).
In particular, G is not monotone on [0, 1]. Thus there exist points c1 ̸= c2 ∈ (0, 1) such
that G(c1) = G(c2). In particular, f([c1]) = f([c2]), while [c1] ̸= [c2], which also contradicts
the injectivity of f . So deg f ̸= 0. If | deg f | > 1, then there exists c ∈ (0, 1) such that
|G(c)−G(0)| = 1. But this shows that f([c]) = f([0]), which also contradicts the inductivity
of f . This shows that | deg f | = 1.

WLOG assume deg f = 1. Then note that G(x+1) = G(x)+1 for all x. So it suffices to
show that G is strictly increasing on [0, 1]. Since G : [0, 1] → [G(0), G(1)] is continuous, if it is
not strictly increasing, there exist points c1 < c2 ∈ (0, 1) such that G(c1) ≥ G(c2). However,
there is then a point c ∈ (c2, 1] such that G(c) = G(c1). This implies f([c]) = f([c1]) and
contradicts the injectivity of f .

Remark 3.2.13. If f is injective and continuous, if deg f = 1, then any lift is strictly increas-
ing, and if deg f = −1, then any lift is strictly decreasing.

Proposition 3.2.14. If | deg f | = 1 and some lift of f is strictly monotone, then f is a
homeomorphism.

Proof. Let G be a strictly monotone lift of f . Note that within (0, 1), G(x) = G(y) implies
x = y. Thus f is injective. Since G is continuous and | deg f | = 1, G maps [0, 1] onto some
interval of length 1. This shows that f(S1) = S1.
Since G is a strictly monotone continuous map of R, it has a strictly monotone continuous
inverse G−1. Then G−1(x + 1) − G−1(x) = deg f for all x ∈ G. This also shows that G−1

is the lift of a continuous circle map h, and h satisfies h ◦ f = f ◦ h = idS1 . Thus f−1 is
continuous.

Suggested Reading 3.2.15. • [3, Section 4.3.1]

Expanding Maps

Definition 3.2.16. A map f : S1 → S1 is said to be expanding if it is continuously differen-
tiable and ∃λ > 1 such that |f ′(x)| ≥ λ for all x ∈ S1.
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Definition 3.2.17. A linear expanding map of S1 is a map of the form Em([x]) = [mx] for
all [x] ∈ S1, where m is an integer ≥ 2.

Exercise 3.2.18. Fix an integer m ≥ 2.
Show that for k ∈ N, Perk(Em) = {[ i

mk−1
] : i = 0, 1, · · · ,mk − 2}.

Proposition 3.2.19. For any integer m ≥ 2, the set Per(Em) is dense in S1.

Proof. Given ϵ > 0, choose k ∈ N such that 1
mk−1

< ϵ. Then Perk(Em) ⊂ Per(Em) splits the

circle into mk − 1 small intervals each of length 1
mk−1

< ϵ.

Proposition 3.2.20. Any expanding map f of the circle is topologically mixing.

Proof. Given U, V non-empty open sets in S1, let I ⊂ π−1(U) be an interval. We will show
that f ◦N(π(I)) = S1 for some N ∈ N. This will imply the topological mixing property.

Let ℓ be the length of I. Since f is expanding, there exists λ > 1 such that |f ′| ≥ λ.
Then for any lift G of f , we have |G′| ≥ λ. But this in turn means that the length of G◦n(I)
is greater than λnℓ for all n → ∞. Pick N ∈ N such that λnℓ > 1. In other words, G◦N(I)
contains an interval of length 1. But this means that f ◦N(π(I)) covers S1.

Proposition 3.2.21. Any expanding map f of the circle is is topologically transitive.

Before proving this, we show the following proposition and theorem.

Proposition 3.2.22. Let X be a topological space and f : X → X be continuous. Then if
f has a dense bi-infinite orbit, then for every ∅ ̸= U, V ⊂ X, open, there exists an N ∈ Z
such that f ◦N(U) ∩ V ̸= ∅. Furthermore, if X is perfect, then this N can be chosen in N.

Proof. Let U, V be as above, and (xn)n∈Z be the dense bi-infinite orbit. Then there exists
n ∈ Z such that zn ∈ V , and m ∈ Z such that zm ∈ U . Letting N = n −m (this could be
≤ 0), we see that zn ∈ f ◦N({zm}), thus f ◦N(U) ∩ V = ∅.

Now assume X is perfect. For the given U, V , if the above N ≥ 0 we are done. Sup-
pose N = n−m < 0. Since zn is not an isolated point, there exists a subsequence |nk| → ∞
such that znk

→ zn and znk
∈ V for all k.

1. If we can choose nk → +∞, then for some k, we have nk ≥ n. Letting Ñ = nk−n ≥ 0,
we see that f ◦Ñ(xn) = xnk

∈ V . Thus f ◦Ñ(U) ∩ V ̸= ∅.

2. If we have nk → −∞, choose n′ = nk with k large enough such that znk
= zn′ ∈

V ∩ f ◦N(U), and n′ < 2n − m. Then z′ = zn′+m−n := f ◦(m−n)(z′n) ∈ f ◦N+m−n(U) =

f ◦n−m+n−m(U) ⊆ U . Moreover, letting Ñ = 2n − m − n′, we see that Ñ > 0 and

f ◦Ñ(z′) = f ◦(2n−m−n′)(z′) = zn ∈ V . Thus f ◦Ñ(U) ∩ V ̸= ∅.

Theorem 3.2.23. Let X be a complete separable (that is, there is a countable dense subset)
metric space with no isolated points. If f : X → X is a continuous map, then the following
four conditions are equivalent:
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1. f is topologically transitive, i.e., it has a dense orbit.

2. f has a dense bi-infinite orbit.

3. If ∅ ≠ U, V ⊂ X, then there exists an N ∈ N such that f ◦N(U) ∩ V ̸= ∅.

4. If ∅ ≠ U, V ⊂ X, then there exists an N ∈ Z such that f ◦N(U) ∩ V ̸= ∅.

Proof. (1) =⇒ (2) and (3) =⇒ (4) are always true.

By Proposition 3.2.22, (2) implies (3).

We will show that separability of X imples (4) implies (2) and (3) implies (1). This will
prove the theorem. The proof methods are similar, so we will only do the case (3) implies
(1).

Let S be a countable dense set. For every p ∈ Q and every x ∈ S,let Up(x) be the ball
of radius p

q
centered at x. Consider the collection {Up(x) : x ∈ S, p ∈ Q}. This collection

is countable, and can be enumerated as {U1, U2, · · · }. Every tail {UN , UN+1, · · · , } is an
open cover of X. Let U0 = f−1(U1). By condition (3), there exists N1 ∈ N such that
f ◦N1(U1) ∩ U2 ̸= ∅. Pick an open ball V1 of radius < 1 such that V1 ⊂ U1 ∩ f−◦N1(U2).

Then f ◦N1(V1) ∩ U2 ̸= ∅. Inductively, for k ≥ 2, there exists an Nk ∈ N such that
f ◦Nk(Vk−1) ∩ Uk+1 ̸= ∅. Let Vk be an open ball of radius < 1

2k−1 such that Vk ⊂ Vk−1 ∩
f ◦−Nk(Uk+1). Then note that f ◦Nk(Vk) ⊂ Uk+1.

Furthermore, V1 ⊃ V2 ⊃ V3 · · · is a decreasing chain of closed balls whose diameter goes
to 0. Thus, ∩∞

k=1Vk = {x} for a unique point x ∈ X. Let x0 = x ∈ U1, and xk = f ◦k(x) for
k ∈ N. since Nk ∈ N for all k, and this gives a dense orbit in X.

Corollary 3.2.24. A continuous open map f of a complete, separable, perfect metric space
is topologically transitive if and only if there are no two disjoint open nonempty f−invariant
sets.

Proof. =⇒ is obvious, since a dense orbit visits every open set.
⇐= : If U, V ⊂ X are open, then the sets W =

⋃
n∈Z f ◦n(U) and O =

⋃
n∈Z f ◦n(V ) are

open because f is an open map, and satisfy f(W ) ⊆ W , and f(O) ⊆ O. Therefore they not
disjoint by assumption, so f ◦n(U)∩f ◦m(V ) ̸= ∅ for some n,m ∈ Z. Then f ◦(n−m)(U)∩V ̸= ∅
and f is topologically transitive by the above theorem.

Proof of Proposition 3.2.21. Since f is topologically mixing, it is also topologically transitive
by Theorem 3.2.23.

Suggested Reading 3.2.25. • [3, Section 7.1.3, Section 7.2.1, Section 7.2.3, Section 7.4.1]

General vs Linear Expanding Maps

Proposition 3.2.26. If f : S1 → S1 is an expanding map, then | deg f | > 1 and Perk(f) =
| deg fk − 1| for all k ∈ N.
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Proof. |f ′| > 1 implies |G′| > 1 for any lift, so, by the Mean-Value Theorem, | deg f | =
|G(x+ 1)−G(x)| > 1. Any iterate f ◦k is also expanding, and note that G◦k is a lift of f ◦k.
Furthermore,

∀x ∈ R, G◦k(x+ 1)−G◦k(x) = (G(x+ 1)−G(x))k ∀k ∈ N

This implies that deg(f ◦k) = (deg f)◦k. so it suffices to consider the case k = 1. Consider G
on the interval [0, 1]. Note that

Fix(f) = {[x] : x ∈ [0, 1], G(x)− x ∈ Z}

The function g(x) := G(x) − x satisfies g(1) = g(0) + deg f − 1, and is also monotone. In
other words, g[0, 1] is an interval of length |g(1) − g(0)| = | deg f − 1|. From this it follows
that

| deg f − 1| ≤ #{x ∈ [0, 1] : G(x)− x ∈ Z} ≤ | deg f − 1|+ 1

• If g(0) ̸∈ Z, then g(1) ̸∈ Z, and #{x ∈ [0, 1] : G(x) − x ∈ Z} = | deg f − 1|. In
this case, all the points in this set map to distinct points on the circle, and thus,
|Fix(f)| = | deg f − 1|.

• If g(0) ∈ Z, then g(1) ∈ Z, and #{x ∈ [0, 1] : G(x) − x ∈ Z} = | deg f − 1| + 1. This
set now contains 0, 1, and | deg f − 1| − 1 distinct points in (0, 1). Since [0] = [1] ∈ S1,
we get |Fix(f)| = | deg f − 1|.

Remark 3.2.27. Note that |Perk(f)| = Perk(Em)|, where m = deg f .

Theorem 3.2.28. Let f be an expanding map of S1. Then f is topologically conjugate to
Em, where m = deg f .

Corollary 3.2.29. Any two expanding maps of the circle of the same degree are topologically
conjugate.

We will not be proving this in our lectures, but the general idea is given here.

Definition 3.2.30. Suppose that g : X → X and f : Y → Y are maps of metric spaces X
and Y and that there is a continuous surjective map h : X → Y such that h ◦ g = f ◦ h.
Then g is said to be semi-conjugate to g via the semiconjugacy h.

Remark 3.2.31. If this h is a homeomorphism, then f and g are topologically conjugate. In
this case we will call h a conjugacy.

Proposition 3.2.32. Let f : S1 → S1 be an expanding map with deg f = m. Then f is
semi-conjugate to the shift σ : ΣA → ΣA where A = {0, 1, · · · , |m| − 1} ⊂ R.

Proof. Let [y0] = f([0]). Note that there exist m intervals ∆0,∆1, · · · ,∆m−1 ⊂ S1 such that
f(∆i) = S1 \ [y0] and the ends of each ∆i are pre-images of y0.

Additionally, for each i, j, there exists a unique maximal interval ∆ij ⊂ ∆i such that
f(∆ij) ⊂ ∆j. Inductively, suppose ∆w is well-defined for all words w of length n over A.
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Given a word w′ = w1w2 · · ·wn+1 of length n+1 over A, define ∆w′ ⊂ ∆w1 to be the unique
maximal interval such that f(∆w′) ⊂ ∆w2w3···wn+1 .

Since f is expanding and scales lengths by at least a factor λ > 1, given any infinite word
s ∈ ΣA, the intersection ∩∞

N=1∆s1s2···sN is a unique point xs ∈ S1.

Claim. The map h : ΣA → S1 given by s 7→ xs is surjective and continuous.

Proof of Claim. This is very similar to the proof of Proposition 2.2.15. ■

Note that by construction, h(σ(s)) = f(xs) = f(h(s)). This shows that h is a semi-
conjugacy between σ and f .

Idea of Proof of Theorem 3.2.28. Let g = Em. Let hf , hg : ΣA → S1 be the semi-conjugacies
of f and g respectively with σ. Consider the set Hx = hg ◦ h−1

f (x) for any x ∈ S1. The
claim is that Hx always consists of precisely one point, which we will call h(x). The map
h : S1 → S1 gives the required topological conjugacy between f and g

Proposition 3.2.33. Expanding maps of S1 are chaotic.

Proof. This follows from Proposition 3.2.21, Theorem 3.2.28 and the fact that the periodic
points of linear expanding maps are dense in S1.

Suggested Reading 3.2.34. • [3, Section 7.3.1, Section 7.4.1]

Rotation Number

Definition 3.2.35. A homeomorphism f of S1 is said to be orientation-preserving if deg f =
1 and orientation-reversing if deg f = −1.

Lemma 3.2.36. If f is an orientation-preserving circle homeomorphism and G a lift, then
G(y)− y ≤ G(x)− x+ 1 for all x, y ∈ R.

Proof. Ler k = ⌊y − x⌋. Then

G(y)− y = G(y) +G(x+ k)−G(x+ k) + (x+ k)− (x+ k)− y

= (G(x+ k)− (x+ k)) + (G(y)−G(x+ k))− (y − (x+ k))

Now G(x+k)−(x+k) = G(x)−x and 0 ≤ y−(x+k) < 1 by choice of k. So G(y)−G(x+k) ≤
1. Thus the right hand side above is at most G(x)− x+ 1− 0.

Lemma 3.2.37. Let (an)n∈Z be a sequence of real numbers such that am+n ≤ an + am+k +L
for some k, L. Then the limit limn→∞

an
n

exists and belongs to R ∪ {−∞}.

Proof.
am+k ≤ am + a2k + L

gives
am+n ≤ an + am + a2k + 2L = an + am + L′

where L′ = a2k + 2L. So wlog, we may take k = 0. Let a = lim inf |n|→∞
an
n
∈ R ∪ {−∞}.
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If a < b < c and |n| > 2L′

(c−b)
such that an

n
< b. Then for any ℓ with |ℓ| ≥ |n| which satisfies

|ℓ|(c− b) > max|r|<|n| ar, writing ℓ = nk′ + r for some k′ ∈ Z, |r| < |n|, we have

aℓ
ℓ

≤ (k′an + ar + k′L′)

ℓ

≤ an
n

+
ar
ℓ
+

L′

n
< c

Thus, lim sup aℓ
ℓ
≤ c. Since c > a was arbitrary, this proves the lemma.

Proposition 3.2.38. Let f be an orientation-preserving homeomorphism of the circle.

1. Let G be a lift of f . Then the following limit exists and is independent of x ∈ R:

ρ(G) = lim
|n|→∞

G◦n(x)− x

n

2. For any other lift G̃ of f , we have ρ(G)− ρ(G̃) = G− G̃ ∈ Z.

3. ρ(G) is rational if and only if f has a periodic point.

Proof. 1. Existence: Take x ∈ R and an = G◦n(x) − x for all n ∈ Z. Then by
Lemma 3.2.36 applied to f ◦m and G◦m, we have G◦m(y) − y ≤ G◦m(x) − x + 1 for
all y ∈ R. Thus, for all m,n ∈ Z,

am+n = G◦(m+n)(x)− x = G◦m(G◦n(x))−G◦n(x) + an ≤ am + 1 + an

Now, using Lemma 3.2.37, we know that limn→∞
an
n
= c+ ∈ R ∪ {−∞}. However,

an
n

=
1

n

n−1∑
i=0

G◦(i+1)(x)−G◦i(x) ≥ min
y∈R

G(y)− y = min
y∈[0,1]

G(y)− y ∈ R

Thus the limit c+ is a real number. Similarly, limn→−∞
an
n

= c− ∈ R. It suffices to
show that c+ = c−.

2. Note that there exists c ∈ Z such that G̃ = G + c. Then for every x ∈ R and

every n ∈ Z, G̃◦n(x) = G◦n(x) + nc. Thus G̃◦n(x)−x
n

= G◦n(x)−x
n

+ c. This proves that

ρ(G̃) = ρ(G) + c.

3. If f has a k−periodic point [x0] andG is a lift of f , thenG◦k(x0) = x0+c for some c ∈ Z,
note that G◦nk(x0) = x0+nc for all n ∈ Z. Thus ρ(G) = lim|n|→∞

G◦nk(x0)−x0

nk
= c

k
∈ Q.

Conversely, if ρ(G) = m
k
∈ Q, then ρ(G◦k) = m. Suppose f̃ = f ◦k has no fixed point.

Pick G̃ to be a lift such that G̃(0) ∈ [0, 1). Then G̃(x) − x ̸∈ Z for all x ∈ R since

G̃(x)− x ∈ Z would imply that [x] is a fixed point for f̃ . Therefore, 0 < G̃(x)− x < 1

for all x ∈ R. Since G̃ − id is continuous and periodic, it attains its minimum and
maximum and therefore there exists a δ > 0 such that

0 < δ ≤ G̃(x)− x ≤ 1− δ < 1
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for all x ∈ R. In particular, we can take x = G̃◦i(0) and use G̃◦n(0) = G̃◦n(0) − 0 =∑n−1
i=0 G̃◦(i+1)(0)− G̃◦i(0) to get

nδ ≤ G̃◦n(0) ≤ (1− δ)n

or

δ ≤ G̃◦n(0)

n
≤ 1− δ

As n → ∞, this gives ρ(F ) ̸= 0, which proves the claim by contraposition.

Definition 3.2.39. Let f be an orientation-preserving homeomorphism of the circle. The
rotation number of f is given by ρ(f) = [ρ(G)] ∈ S1 where G is any lift of f .

Definition 3.2.40. Let X be a topological space and f : X → X be a dynamical system.
A point x ∈ X is said to be heteroclinic to p, q ∈ X under f if limn→∞ f ◦n(x) = p and
limn→−∞ f ◦n(x) = q. If p = q, we say x is homoclinic under f to p.

Theorem 3.2.41. Let f : S1 → S1 be an orientation-preserving homeomorphism. Suppose
ρ(f) = p

q
∈ Q.

• If f has exactly one periodic orbit A = {x1, x2, · · · , xr}, then for every point x ∈ S1\A,
x is heteroclinic under f ◦q to two points xi, xj ∈ A. Furthermore, xi = xj if and only
if r = 1.

• If f has more than one periodic orbit, then every non-periodic point x is heteroclinic
under f ◦q to two points u and v that are in distinct periodic orbits.

Theorem 3.2.42 (Poincaré Classification Theorem). Let f : S1 → S1 be an orientation-
preserving homeomorphism. Suppose ρ(f) = ρ ̸∈ Q. Then there exists a continuous mono-
tone map h : S1 → S1 such that h ◦ f = Rρ ◦ h.

• If f is topologically conjugate, then h is a homeomorphism.

• If f is not topologically conjugate, then h is not invertible.

Definition 3.2.43. A map f : X → X of a metric space is said to exhibit sensitive depen-
dence on initial conditions if there is a ∆ > 0, called a sensitivity constant, such that for every
x ∈ X and ϵ > 0 there exists a point y ∈ X with d(x, y) < ϵ and d(f ◦N(x), f ◦N(y)) ≥ ∆ for
some N ∈ N .

Theorem 3.2.44. Chaotic maps exhibit sensitive dependence on initial conditions, except
when the entire space consists of a single periodic orbit.

Suggested Reading 3.2.45. • [3, Section 4.3.2 - Section 4.3.6]. These sections contain a
proof of Theorems 3.2.41 and 3.2.42.
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3.3 Linear Maps of the Plane

Before we look at maps on the plane, consider any linear map f : R → R. We know that
f(x) = kx + b for some k, b ∈ R. The case k = 0 is trivial. We note that if k = 1, then all
forward and backward orbits tend to ±∞, with the sign depending on the sign of b.

Now consider the case k ̸= 1. In this case f has a unique fixed point at x = b
1−k

. Then

by taking φ : R → R be the translation φ(x) = x− b
1−k

, we see that g = φ ◦ f ◦φ−1(x) = kx
for all x ∈ R. In other words, f is linearly conjugate to the map x 7→ kx. Thus we only need
to look at the dynamics of g.

1. if |k| > 1, then g◦n(x) → ∞ and g◦−n(x) → 0 as n → ∞.

2. if |k| < 1, then g◦n(x) → 0 and g◦−n(x) → ∞ as n → ∞.

3. if k = −1, then g is a reflection, and so g ◦ g = idR,

Now consider linear maps on R2. Any such map is of the form x 7→ Ax where A is a 2 × 2
matrix with real entries. Note that it has two eigenvalues λ1 and λ2, where both are real or
they are a complex conjugate pair.

Proposition 3.3.1. If λ1, λ2 ∈ R and λ1 ̸= λ2, then under a change of basis P : R2 → R2,

P−1AP =

[
λ1 0
0 λ2

]
Proof. Let v1 and v2 be a pair of eigenvectors for λ1 and λ2 respectively. Then by choosing P
so that P (e1) = v1 and P (e2) = v2, we see that P−1AP (e1) = λ1e1 and P−1AP (e2) = λ2e2.
Therefore this matrix has the required diagonal form.

Proposition 3.3.2. If λ1 = λ2 ∈ R, then under a change of basis P : R2 → R2,

P−1AP =

[
λ1 a
0 λ1

]
where a = 0 if λ1 has two linearly independent eigenvectors, and a ̸= 0 otherwise.

Proof. Suppose there exist linearly independent eigenvectors v1 and v2 for λ1, we proceed
exactly as in the pervious proposition. Now suppose λ1 only one eigenvector upto scaling,
call it v1. Then pick any basis change P so that P (e1) = v1. Then the matrix PAP−1 has
the form

P−1AP =

[
λ1 a
0 λ1

]
for some non-zero value a.

Exercise 3.3.3. For any a ∈ R with a ̸= 0, the matrices

[
λ1 a
0 λ1

]
and

[
λ1 1
0 λ1

]
are linearly

conjugate.
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Remark 3.3.4. The above exercise shows that we can assume a = 1 in the previous proposi-
tion.

Exercise 3.3.5. Show that if λ1 and λ2 are a complex conjugate pair, then there exists a
unique ρ > 0 and θ ∈ R unique upto translation by 2π, and a linear change of coordinates
P , such that

PAP−1 = ρ

[
cos θ − sin θ
sin θ cos θ

]
Contracting case

Proposition 3.3.6. If both eigenvalues of A have absolute value < 1, then A is contracting
and all forward orbits tend to 0.

Proof. This is trivial, since the condition implies that ||A|| < 1, so we have ||Ax|| ≤ ||A||||x||
for all x.

Proposition 3.3.7. If both eigenvalues are real and |λ1| < |λ2| < 1, then the curves |y| =
C|x|

log |λ2|
log |λ1| for all C ∈ R are invariant under A.

Proof. By Proposition 3.3.1, we can assume A =

[
λ1 0
0 λ2

]
. Also note that An

[
x
y

]
=[

λn
1x

λn
2y

]
= λn

1

[
x(

λ2

λ1

)n

y

]
and the orbit of every vector tends to 0. It suffices to show the

following claim.

Claim. The forward orbit of any vector

[
x0

y0

]
lies on the curve |y| = C|x|

log |λ2|
log |λ1| for some

constant C that depends only on x0, y0.

Proof of Claim. Let C = |y0|

|x0|
log |λ2|
log |λ1|

. We show that

[
x
y

]
= An

[
x0

y0

]
lies on this curve as well.

|y|

|x|
log |λ2|
log |λ1|

=
|λn

2 |
log |λ2|
log |λ1| |y0|

|λn
1 ||x0|

log |λ2|
log |λ1|

=
|λn

1 ||y0|

|λn
1 ||x0|

log |λ2|
log |λ1|

= C

■

Exercise 3.3.8. If both eigenvalues are real and |λ1| = |λ2| < 1, then the curves x = Cy +

y log|y|
log|λ1| are invariant.

Exercise 3.3.9. If neither eigenvalue is real and are of the form ρe±iθ with 0 < ρ < 1, then
the polar curves (r;φ) where r = Ce−(θ−1 log ρ)φ are invariant.

Remark 3.3.10 (Expanding Case). If |λ1|, |λ2| > 1, then A is invertible and A−1 is contracting
by the above discussion.
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Hyperbolic/Saddle Case

Definition 3.3.11. A is said to be hyperbolic if |λ1| < 1, and |λ2| > 1.

Note that if A is hyperbolic both eigenvalues must be real, so A is diagonalizable.

Proposition 3.3.12.

3.4 Linear Maps in higher dimensions

3.5 Hyperbolic Toral Automorphisms

Arnold’s Cat Map

Consider the following linear map of R2:

L

[
x
y

]
=

[
2x+ y
x+ y

]
=

[
2 1
1 1

] [
x
y

]

If two vectors

[
x
y

]
and

[
x′

y′

]
represent the same element of the torus T2, that is, if[

x− x′

y − y′

]
∈ Z2, thenL

[
x
y

]
− L

[
x′

y′

]
∈ Z2, so L

[
x
y

]
and L

[
x
y

]
also represent the same ele-

ment of T2.

Thus L defines a torus endomorphism TL : T2 → T2:

TL

[
x
y

]
=

[
2x+ y
x+ y

]
( mod 1)

Since detL = 1, the map TL is an automorphism of the torus. We note that L−1 =

[
1 −1
−1 2

]
.

Exercise 3.5.1. The eigenvalues of L are λ1 =
3+

√
5

2
> 1 and λ−1

1 = λ2 =
3−

√
5

2
< 1.

Figure ?? gives an idea of the action of TL on the fundamental square I = {(x, y)0 ≤
x < 1, 0 ≤ y ≤ 1}. The lines with arrows are the eigendirections. For any matrix L with
determinant ±1, the map TL preserves the area of sets on the torus.

Proposition 3.5.2. Periodic points of TL are dense and Pern(TL) = λn
1 + λn

2 − 2.

Proof. To obtain density we show that points with rational coordinates are periodic points.
Let x, y ∈ Q. Taking the common denominator write x = s

q
, y = t

q
, where s, t, q ∈ Z. Then

TL

[
s/q
t/q

]
=

[2s+t
q

s+t
q

]
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is a rational point whose coor- dinates also have denominator q. But there are only q2 differ-
ent points on T2 whose coordinates can be represented as rational numbers with denominator

q, and all iterates T n
L

[ s
q
t
q

]
, n = 0, 1, 2 · · · , belong to that finite set. Thus they must repeat,

that is, T n
L

[ s
q
t
q

]
= Tm

L

[ s
q
t
q

]
for some n,m ∈ Z. But since TL is invertible, T n−m

L

[ s
q
t
q

]
=

[ s
q
t
q

]
and

[ s
q
t
q

]
is a periodic point, as required. This gives density.

Next we show that points with rational coordinates are the only periodic points for TL. Write

T n
L

[ s
q
t
q

]
=

[
ax+ by
cx+ dy

]
( mod 1), where a, b, c, d ∈ Z. If T n

L

[
x
y

]
=

[
x
y

]
, then ax + by = x + k,

cx+ dy = y + l for k, l ∈ Z. Since 1 is not an eigenvalue for Ln, we can solve for (x, y):

x =
(d− 1)k − bl

(a− 1)(d− 1)− cb

y =
(a− 1)l − ck

(a− 1)(d− 1)− cb

Thus x, y ∈ Q. Now we calculate Pern(TL). The map

G = T n
L − id :

[
x
y

]
7→

[
(a− 1)x+ by
cx+ (d− 1)y

]
( mod 1)

is a well-defined noninvertible map of the torus onto itself. As before, if T n
L fixes

[
x
y

]
, then

then (a− 1)x+ by and cx+ (d− 1)y are integers;

hence G

[
x
y

]
= 0( mod 1), that is, the fixed points of T n

L are exactly the preimages of the

point

[
0
0

]
under G. Modulo 1 these are exactly the points of Z2 in (Ln − id)([0, 1)× [0, 1)).

We presently show that their number is given by the area of (Ln − id)([0, 1)× [0, 1)), which
is | det(Ln − id)| = |(λn

1 − 1)(λn
2 − 1)| = λn

1 + λn
2 − 2.

Lemma 3.5.3. The area of a parallelogram with integer vertices is the number of lattice
points it contains, where points on the edges are counted as half, and all vertices count as a
single point.

Proof. Denote the area of the parallelogram by A. Adding the number of lattice points it
contains in the prescribed way gives an integer N , which is the same for any translate of the
parallelogram. Now consider the canonical tiling of the plane by copies of this parallelogram
translated by integer multiples of the edges. Denote by l the longest diagonal. The area of the
tiles can be determined in a backward way by determining how many tiles lie in the square
[0, n)× [0, n) for n > 2l. Those that lie inside cover the smaller square [l, n− l)× [l, n− l)
completely, so there are at least

(n− 2l)2

A
≥ n2

A
·
(
1− 4l

n

)
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Since any tile that intersects the square is contained in [l, n− l)× [l, n− l), there are at most

(n− 2l)2

A
=

n2

A
·
(
1 +

4l

n

(
1 +

ℓ

n

))
<

n2

A

(
1 +

6ℓ

n

)
The number n2 of integer points in the square is at least the number of points in tiles in the
square and at most the number of points in tiles that intersect the square. Therefore

N · n
2

A
·
(
1− 4l

n

)
≤ n2 ≤ N · n

2

A
·
(
1 +

6l

n

)
And for all n > 2l, (

1− 4l

n

)
≤ N

A
≤

(
1 +

6l

n

)
This shows N = A.

The eigenvectors corresponding to the first eigenvalue belong to the line y =
√
5−1
2

x. The
family of lines parallel to it is invariant under L, and L uniformly expands distances on those
lines by a factor λ1. Similarly, there is an invariant family of contracting lines y =

√
5−1
2

x+ c
where c is a constant.

Proposition 3.5.4. The automorphism TL is topologically mixing.

Fix open sets U, V ⊂ T2. The L−invariant family of lines
√
5−1
2

x + c projects to T2 as

an TL-invariant family of orbits of the linear flow T t
ω with irrational slope ω =

[
1√
5−1
2

]
. By

Proposition 5.1.3, this flow is minimal. Thus the projection of each line is everywhere dense
on the torus, and hence U contains a piece J of an expanding line; furthermore, for any ϵ > 0,
there exists T = T (ϵ) and a segment of an expanding line of length T that intersects any
ϵ-ball on the torus. Since all segments of a given length are translations of one another, this
property holds for all segments. Now take ϵ such that V contains an ϵ-ball and N ∈ N such
that f ◦N(J) has length at least T . Then f ◦n(J)∩V ̸= ∅ for n ≥ N and thus f ◦n(U)∩V ̸= ∅
for n ≥ N .

Corollary 3.5.5. The automorphism TL is chaotic.

Proof. Combine Propositions 3.5.2, 3.5.4 and Theorem 3.2.23.

3.6 Coding

The Smale Horseshoe

We now describe Smale’s original “horseshoe”. Let ∆ be a rectangle in R2 and f : ∆ → R2

a diffeomorphism of ∆ onto its image such that the intersection ∆ ∩ f(∆) consists of two
“horizontal” rectangles ∆0 and ∆1 and the restriction of f to the components ∆i := f−1(∆i),
i = 0, 1, is a hyperbolic linear map, contracting in the vertical direction and expanding in
the horizontal direction.
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Figure 3.1: The horseshoe: the light grey set is f(∆) and the dark grey set is f ◦2(∆)

Figure 3.2: The paperclip

This implies that the sets ∆0 and ∆1 are “vertical” rectangles. One of the simplest ways to
achieve this effect is to bend into a “horseshoe”(see figure above), or rather into the shape of
a permanent magnet, although this method produces some inconveniences with orientation.
Another way, which is better from the point of view of orientation, is to bend roughly into
a paperclip shape (see above). If the horizontal and vertical rectangles lie strictly inside ∆,
then the maximal invariant subset Λ =

⋂∞
n=−∞ f ◦−n(∆) is contained in the interior of ∆.

Definition 3.6.1. Let Ω = {s = · · · s−2s−1.s0s1s2 · · · : si ∈ {0, 1}∀i ∈ Z} be the space of
bi-infinite sequences over {0, 1}. Define the shift map σ : Ω → Ω by setting

σ(· · · s−2s−1.s0s1s2 · · · ) = · · · s−1s0.s1s2 · · ·

Just like the space Σ = Σ{0,1} of one-sided infinite sequences, Ω has a metric given by

dΩ(s, t) =
∑
n∈Z

d(sn, tn)

2|n|

It can be shown that Ω is homeomorphic to the Cantor set, and that σ is continuous with
respect to the topology induced by this metric. Additionally, in this case σ is invertible.

Proposition 3.6.2. f : Λ → Λ is topologically conjugate to σ : Ω → Ω.

Proof. We use ∆0 and ∆1 as the“pieces” in the coding construction and start with positive
iterates. The intersection ∆ ∩ f(∆) ∩ f ◦2(∆) consists of four thin horizontal rectangles:
∆ij = ∆i ∩ f(∆j) = f(∆i) ∩ f ◦2(∆j), i, j ∈ {0, 1}.

Continuing inductively, one sees that ∩n
i=0f

◦i(∆) consists of 2n thin disjoint horizontal
rectangles whose heights are exponentially decreasing with n. Each such rectangle has the
form ∆w = ∩n

i=1f
◦i(∆wi), where w = w1w2 · · ·wn is a finite word over {0, 1}.
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Each infinite intersection ∩∞
n=1f

◦n(∆wn), wn ∈ {0, 1}, is a horizontal segment, and the
intersection ∩∞

n=1f
◦n(∆) is the product of the horizontal segment with a Cantor set in the

vertical direction.
Similarly, one defines and studies vertical rectangles ∆w0,...,w−n = ∩n

i=0f
◦(−i)(∆w−i), the

vertical segments ∩∞
n=0f

◦(−n)(∆w−n), and the set ∩∞
n=0f

◦(−n)(∆), which is the product of a
segment in the vertical direction with a Cantor set in the horizontal direction. The desired
invariant set= ∩∞

n=−∞f ◦(−n)(∆) is the product of two Cantor sets and hence is a Cantor set
itself, and the map

h : Σ → Λ

given by
h(· · · s−2s−1s0.s1s2s3 · · · ) = ∩∞

n=−∞f ◦(−n)(∆sn)

is a homeomorphism that conjugates σ and f .

Suggested Reading 3.6.3. [3, Section 7.4.4]

3.7 Maps on the real line

Sharkovsky’s Theorem
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Chapter 4

Ergodic Theory
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